

http://avaxhome.ws/blogs/ChrisRedfield

Microsoft Visual C++/CLI
Step by Step

Julian Templeman

Published with the authorization of Microsoft Corporation by:
O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, California 95472

Copyright © 2013 by Julian Templeman
All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any
means without the written permission of the publisher.

ISBN: 978-0-7356-7517-9

1 2 3 4 5 6 7 8 9 LSI 8 7 6 5 4 3

Printed and bound in the United States of America.

Microsoft Press books are available through booksellers and distributors worldwide. If you need support related
to this book, email Microsoft Press Book Support at mspinput@microsoft.com. Please tell us what you think of
this book at http://www.microsoft.com/learning/booksurvey.

Microsoft and the trademarks listed at http://www.microsoft.com/about/legal/en/us/IntellectualProperty/
Trademarks/EN-US.aspx are trademarks of the Microsoft group of companies. All other marks are property of
their respective owners.

The example companies, organizations, products, domain names, email addresses, logos, people, places, and
events depicted herein are fictitious. No association with any real company, organization, product, domain name,
email address, logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided without
any express, statutory, or implied warranties. Neither the authors, O’Reilly Media, Inc., Microsoft Corporation,
nor its resellers, or distributors will be held liable for any damages caused or alleged to be caused either directly
or indirectly by this book.

Acquisitions and Developmental Editor: Russell Jones

Production Editor: Kara Ebrahim

Technical Reviewer: Luca Regnicoli

Copyeditor: Octal Publishing, Inc.

Indexer: BIM Indexing and Proofreading Services

Cover Design: Twist Creative • Seattle

Cover Composition: Ellie Volckhausen

Illustrator: Rebecca Demarest

http://www.microsoft.com/learning/booksurvey
http://www.microsoft.com/about/legal/en/us/IntellectualProperty/Trademarks/EN-US.aspx
http://www.microsoft.com/about/legal/en/us/IntellectualProperty/Trademarks/EN-US.aspx

I would like to dedicate this book to my wife, Jane, without
whose steadfast love and support none of this would be possible.

—Julian Templeman

Contents at a Glance

Introduction	 xxi

Part I	 GETTING STARTED WITH C++ .NET

Chapter 1	 Hello C++!	 3

Chapter 2	 Introducing object-oriented programming	 13

Chapter 3	 Variables and operators	 23

Chapter 4	 Using functions	 37

Chapter 5	 Decision and loop statements	 57

Chapter 6	 More about classes and objects	 77

Chapter 7	 Controlling object lifetimes	 103

Chapter 8	 Inheritance	 121

Part II	 MICROSOFT .NET PROGRAMMING BASICS

Chapter 9	 Value types	 143

Chapter 10	 Operator overloading	 159

Chapter 11	 Exception handling	 175

Chapter 12	 Arrays and collections	 197

Chapter 13	 Properties	 229

Chapter 14	 Delegates and events	 245

Chapter 15	 The .NET Framework class library	 263

Part III	 USING THE .NET FRAMEWORK

Chapter 16	 Working with files	 281

Chapter 17	 Reading and writing XML	 305

Chapter 18	 Using ADO.NET	 333

Chapter 19	 Writing a service by using Windows
	 Communication Foundation	 351

Chapter 20	 Introducing Windows Store apps	 369

Chapter 21	 More about Windows Store apps	 397

vi	 Contents at a Glance

Part IV	 ADVANCED TOPICS

Chapter 22	 Working with unmanaged code	 437

Chapter 23	 Attributes and reflection	 453

Chapter 24	 Living with COM	 475

Index	 487

		 vii

Contents

Introduction. xxi

Part I	 GETTING STARTED WITH C++ .NET

Chapter 1	 Hello C++!	 3
What is C++/CLI?. 3

Your first C++/CLI application. 4

The main function. 4

C++ keywords and identifiers . 5

Creating an executable application—theory. 6

Editing the application source files. 6

Compiling the source files . 6

Running and testing the application . 7

Creating an executable application—practice. 7

Creating a project . 8

Editing the C++ source code. 9

Building the executable . 9

Executing the application. 11

Conclusion. 11

Quick reference. 11

Chapter 2	 Introducing object-oriented programming	 13
What is object-oriented programming?. 13

Features of object-oriented programming languages. 14

Encapsulation. 14

Inheritance . 15

Polymorphism. 15

Classes and objects. 16

viii	 Contents

Benefits to the development life cycle. 16

A simple example. 17

Quick reference. 22

Chapter 3	 Variables and operators	 23
What is a variable?. 23

The fundamental data types. 23

Declaring a variable. 25

Variable naming. 25

Declaring multiple variables. 26

Assigning values to variables . 26

Handles and pointers. 27

Arrays . 28

Constants. 28

Typedefs. 29

The .NET Framework String class. 29

Operators and expressions. 30

Assignment operators. 30

Arithmetic operators. 30

Relational and logical operators. 31

Bitwise operators. 32

The ternary operator. 33

Type casting . 33

Operator precedence and associativity. 34

Quick reference. 35

Chapter 4	 Using functions	 37
Declaring function prototypes. 38

Declaring a simple function prototype . 38

Declaring parameters in a function prototype. 39

Declaring the return type in a function prototype 39

Declaring default values for function parameters. 40

	 Contents	 ix

Defining function bodies. 41

Calling functions. 45

Stepping through the application by using debugger. 47

Understanding local and global scope . 51

Quick reference. 55

Chapter 5	 Decision and loop statements	 57
Making decisions by using the if statement. 57

Performing one-way tests . 57

Performing two-way tests . 61

Performing multiway tests. 62

Performing nested tests. 64

Making decisions by using the switch Statement. 65

Defining simple switch statements. 65

Using fall-through in a switch statement. 67

Performing loops . 68

Using while loops. 68

Using for loops. 70

Using do-while loops. 71

Performing unconditional jumps . 73

Quick reference. 75

Chapter 6	 More about classes and objects	 77
Organizing classes into header files and source files. 78

Declaring a class in a header file. 79

Implementing a class in a source file. 81

Creating objects . 83

Initializing objects by using constructors. 84

Defining constructors. 84

Member initialization lists. 86

Defining class-wide members. 87

Defining class-wide data members. 88

Defining class-wide member functions. 90

Class constructors . 92

x	 Contents

Using constants in classes. 93

Using class-wide constants. 93

Using instance constants . 94

Defining object relationships. 95

Defining the LoyaltyScheme Class. 95

Implementing the LoyaltyScheme class. 96

Creating and using LoyaltyScheme objects. 97

Testing the application. 100

Quick reference. 101

Chapter 7	 Controlling object lifetimes	 103
The .NET approach to object lifetimes. 103

Destruction and finalization. 105

Destructors. 105

Finalizers . 106

Implementing the destructor and finalizer for a class. 107

Objects and stack semantics . 110

Copy constructors. 113

Relating objects with stack semantics . 116

Quick reference. 119

Chapter 8	 Inheritance	 121
What is inheritance?. 121

Inheritance terminology. 122

Inheritance and code reuse. 122

Designing an inheritance hierarchy. 123

A word on substitutability . 123

Defining a base class . 124

Defining a derived class. 126

Creating derived class objects . 129

Concrete and abstract classes. 130

Overriding member functions . 131

	 Contents	 xi

Protected access. 136

Defining sealed classes. 137

Abstract and sealed. 137

Defining and using interfaces. 138

Quick reference. 139

Part II	 MICROSOFT .NET PROGRAMMING BASICS

Chapter 9	 Value types	 143
Reference types and value types. 143

The need for value types . 144

Properties of value types. 145

Structures. 146

Creating and using a simple struct. 146

Investigating the structure. 147

The differences between structures and classes 149

Implementing constructors for a structure. 149

Using one structure within another. 150

Copying structures. 152

Enumerations. 153

Creating and using an enumeration. 153

Using enumerations in applications. 155

Using memory efficiently. 156

Quick reference. 156

Chapter 10	 Operator overloading	 159
What is operator overloading?. 159

What types need overloaded operators? . 160

What can you overload?. 160

Rules of overloading. 161

Overloading operators in managed types. 161

Overloading arithmetic operators. 161

Using static operator overloads. 163

xii	 Contents

What functions can you overload?. 166

Implementing logical operators. 167

Implementing increment and decrement. 171

Operators and reference types. 172

Guidelines for providing overloaded operators. 173

Quick reference. 174

Chapter 11	 Exception handling	 175
What are exceptions?. 175

How do exceptions work?. 177

Exception types . 178

Throwing exceptions . 178

Handling exceptions. 180

Using the try and catch construct. 180

Customizing exception handling. 182

Using the exception hierarchy. 183

Using exceptions with constructors . 184

Nesting and rethrowing exceptions. 185

The finally block. 188

The catch(…) block. 189

Creating your own exception types. 189

Using safe_cast for dynamic casting. 191

Using exceptions across languages. 192

Quick reference. 195

Chapter 12	 Arrays and collections	 197
Native C++ arrays. 197

Passing arrays to functions. 200

Initializing arrays . 202

Multidimensional arrays. 202

Dynamic allocation and arrays. 203

Generic types. 205

Managed arrays. 207

	 Contents	 xiii

The .NET array class . 212

Basic operations on arrays. 213

More advanced array operations . 215

Using enumerators. 218

Other .NET collection classes. 219

The List<T> class. 219

The SortedList<K,V> class. 222

Generics and templates. 224

The STL/CLR library. 224

Quick reference. 227

Chapter 13	 Properties	 229
What are properties?. 229

The two kinds of properties. 230

Implementing scalar properties. 231

Errors in properties . 232

Auto-implemented properties. 233

Read-only and write-only properties. 233

Properties, inheritance, and interfaces. 235

Implementing indexed properties. 236

The Bank example. 236

Creating Account class properties. 239

Adding accounts to the Bank class . 240

Implementing the Add and Remove methods 240

Implementing an indexed property to retrieve accounts. 241

Quick reference. 244

Chapter 14	 Delegates and events	 245
What are delegates?. 245

What is the purpose of delegates?. .246

Defining delegates. 247

Implementing delegates. 247

xiv	 Contents

What are events?. 253

Implementing an event source class. 254

Implementing an event receiver. 256

Hooking it all together. 258

Quick reference. 262

Chapter 15	 The .NET Framework class library	 263
What is the .NET Framework?. 263

The Common Language Runtime. 264

The Microsoft Intermediate Language. 264

The Common Type System. 264

The Common Language Specification. 265

The .NET Framework class library. 265

Assemblies. 266

Metadata. 266

The .NET Framework namespaces. 268

Using namespaces in C++ applications. 270

The System namespace. 270

The Collections namespaces. 272

The Collections interfaces. 273

The Diagnostics namespace. 274

The IO namespace. 274

The Windows namespaces. 275

The Net namespaces. 275

The ServiceModel namespaces . 275

The Xml namespaces. 276

The Data namespaces. 276

The Web namespaces. 277

Quick reference. 278

	 Contents	 xv

Part III	 USING THE .NET FRAMEWORK

Chapter 16	 Working with files	 281
The System::IO namespace. 282

Implementing text I/O by using readers and writers. 283

Using TextWriter. 283

The FileStream class. 286

Using TextReader. 287

Working with files and directories. 290

Getting information about files and directories. 290

Binary I/O. 298

The BinaryWriter class. 298

The BinaryReader class. 299

Quick reference. 303

Chapter 17	 Reading and writing XML	 305
XML and .NET . 305

The .NET XML namespaces. 306

The XML processing classes. 306

Parsing XML by using XmlReader. 307

Parsing XML with validation. 315

Writing XML by using XmlTextWriter . 318

Using XmlDocument. 322

What is the W3C DOM?. 323

The XmlDocument class . 323

The XmlNode class. 325

Quick reference. 332

Chapter 18	 Using ADO.NET	 333
What is ADO.NET? . 334

ADO.NET data providers. 334

ADO.NET namespaces. 335

ADO.NET assemblies. 336

xvi	 Contents

Creating a connected application. 336

Connecting to a database . 337

Creating and executing a command. .340

Executing a command that modifies data. 341

Executing queries and processing the results. 342

Creating a disconnected application. 344

Disconnected operation using a DataSet. 345

Quick reference. 350

Chapter 19	 Writing a service by using Windows Communication
Foundation	 351

What is Windows Communication Foundation?. 351

Distributed systems. 352

Services . 352

Connectivity. 353

The ABCs of WCF. 353

Endpoints. 353

Address . 354

Binding. 355

Contract. 356

Message exchange patterns. 357

Behaviors. 358

Creating a service. 359

Writing a service client. 361

Adding metadata to the service. 363

Accessing a service by using a proxy. 365

Quick reference. 368

Chapter 20	 Introducing Windows Store apps	 369
A (brief) history of writing Windows user interface applications. 369

The Win32 API . 369

Microsoft Foundation Classes. 370

Windows Forms. 370

	 Contents	 xvii

Windows Presentation Foundation. 371

Windows 8 and Windows Store. 371

Which UI library to choose?. 372

Introducing Windows Store apps. 372

Main features of Windows Store apps. 373

Writing a Windows Store app. 374

Creating your first Windows Store app . 375

Examining the project. 379

Introducing XAML. 380

What is XAML?. 380

XAML syntax. 381

XAML controls . 382

Layout controls. 384

Event handling. 389

C++/CX and Windows RT . 389

Windows RT. .390

Metadata. 390

C++/CX syntax . 391

Common namespaces. 393

Quick reference. 395

Chapter 21	 More about Windows Store apps	 397
Building the basic calculator. 397

Laying out the number buttons . 398

Handling number input . 401

Adding arithmetic operations. 403

Performing calculations . 407

Testing the calculator . 410

Improving the graphics. 412

Handling different number bases. 416

Using app bars. 425

Adding sharing. 428

Where next?. 433

Quick reference. 433

xviii	 Contents

Part IV	 ADVANCED TOPICS

Chapter 22	 Working with unmanaged code	 437
Managed vs. unmanaged code. 437

Mixed classes . 437

The GCHandle type. 438

Pinning and boxing. .440

Interior pointers. 441

Pinning pointers. 441

Boxing and unboxing . 442

Boxing . 443

Unboxing. 443

Using P/Invoke to call functions in the Win32 API. 444

The DllImportAttribute class. 447

Passing structures . 449

Quick reference. 452

Chapter 23	 Attributes and reflection	 453
Metadata and attributes. 453

Using ILDASM. 454

Using predefined attributes . 457

The AssemblyInfo.cpp file. 457

Using the predefined attribute classes. 458

Defining your own attributes. 461

Attribute class properties. 463

Design criteria for attribute classes. 463

Writing a custom attribute. 463

Using reflection to obtain attribute data. 467

The Type class. 467

Accessing standard attributes. 469

Accessing custom attribute data. 470

Quick reference. 472

	 Contents	 xix

Chapter 24	 Living with COM	 475
COM components and the COM Interop. 476

Using COM components from .NET code . 476

How do RCWs work?. 476

Creating and using RCWs. 477

Handling COM errors . 480

Late binding to COM objects. 481

Using .NET components as COM components. 483

What must .NET types implement to be used as COM objects?. . 483

Quick reference. 485

Index	 487

		 xxi

Introduction

C++ is a powerful, industrial-strength programming language used in tens of thou-
sands of applications around the world, and this book will show you how to get

started using C++ on Windows.

Of all the languages supported by Microsoft, C++ gives you access to the widest
range of technologies on the Windows platform, from writing games, through low-level
system software, to line-of-business applications. This book is going to introduce you to
several of the areas in which C++ is used in Windows development.

For over a decade .NET has become established as the way to write desktop appli-
cations for Windows, and it provides a wealth of technologies to support developers.
C++/CLI is the variant of C++ that runs in the .NET environment, and you can use it,
along with other languages such as C#, to create rich desktop applications.

More recently, Windows 8 has introduced many new features to the Windows oper-
ating system, but perhaps the most exciting is the debut of Windows Store applications.
These graphical applications are designed to run on touch screen and mobile devices,
and provide a completely new way to construct user interfaces on Windows. C++ is one
of the main languages supported for Windows Store development, and this book will
give you an introduction to these applications and how to develop them in C++/CX,
another variant of C++ introduced specifically for this purpose.

Who should read this book

This book exists to help programmers learn how to write applications using C++ on the
Windows platform. It will be useful to those who want an introduction to writing .NET
applications using C++, as well as to those who want to see how to write Windows Store
applications.

If you are specifically interested in Windows Store applications, you may wish to look
at Build Windows 8 Apps with Microsoft Visual C++ Step by Step by Luca Regnicoli, Paolo
Pialorsi, and Roberto Brunetti, published by Microsoft Press.

xxii   Introduction

Assumptions
This book expects that you have some experience of programming in a high-level
language, so that you are familiar with concepts such as functions and arrays. It is quite
sufficient to have experience in a procedural language such as Visual Basic, and I do not
assume that you have any experience of object-oriented programming in general, or of
C++ in particular (although any knowledge of a “curly bracket” language will be useful).

Who should not read this book

This book is not suitable for complete beginners to programming. For readers who are
completely new to programming and want to learn C++, I recommend starting with
a book such as Programming: Principles and Practice Using C++ by Bjarne Stroustrup,
published by Addison-Wesley.

This book is also not suitable for those who want to learn standard C++ or older-
style Win32 development, because it concentrates on two Microsoft variants (C++/CLI
and C++/CX) and does not cover topics such as the CLR or MFC in any detail.

Organization of this book

This book is divided into four sections.

■■ Part I, “Getting Started,” introduces the main parts of the C++ language, getting
you used to coding in C++ and building applications in Visual Studio 2012.

■■ Part II, “Microsoft .NET Programming Basics,” continues by introducing those
parts of C++ that are specific to Microsoft’s C++/CLI language.

■■ Part III, “Using the .NET Framework,” covers the main features in the .NET
Framework libraries used for writing .NET applications. This part includes
discussion of working with files, XML and databases, and creating graphical
applications.

■■ Part IV, “Advanced Topics,” covers some more advanced material, including
details for working with legacy code.

	 Introduction   xxiii

Finding your best starting point in this book
The various sections of this book cover a wide range of technologies associated with
C++ on the Windows platform. Depending on your needs and your existing under-
standing of C++, you may wish to focus on specific areas of the book. Use the following
table to determine how best to proceed through the book.

If you are Follow these steps

New to C++ Read Part I carefully before continuing to the rest
of the book.

Familiar with OO programming but not with C++ Read Part I carefully, but you can omit Chapter 2.

Familiar with C++ Review Part I, looking for the differences be-
tween standard C++ and C++/CLI.

Familiar with .NET, but not Windows Store
applications.

Read Chapters 20 and 21.

Most of the book’s chapters include exercises that let you try out the concepts you
have just learned. Solutions to these exercises can be downloaded using the companion
code link from this book’s web page on oreilly.com. See the “Code samples” section for
details on how to download the companion code.

Conventions and features in this book

This book presents information using conventions designed to make the information
readable and easy to follow.

■■ Each exercise consists of a series of tasks, presented as numbered steps (1, 2,
and so on) listing each action you must take to complete the exercise.

■■ Boxed elements with labels such as “Note” provide additional information or
alternative methods for completing a step successfully.

■■ Text that you type (apart from code blocks) appears in bold.

■■ A plus sign (+) between two key names means that you must press those keys at
the same time. For example, “Press Alt+Tab” means that you hold down the Alt
key while you press the Tab key.

■■ A vertical bar between two or more menu items (e.g., File | Close) means that
you should select the first menu or menu item, then the next, and so on.

xxiv   Introduction

System requirements

You will need the following hardware and software to complete the practice exercises in
this book:

■■ One of Windows 7, Windows 8, Windows Server 2008 with Service Pack 2, or
Windows Server 2008 R2. Note that if you want to build and run the Windows
Store applications featured in Chapters 20 and 21, you will need Windows 8.

■■ Visual Studio 2012, any edition

■■ A computer that has a 1.6 GHz or faster processor (2 GHz is recommended)

■■ 1 GB (32 Bit) or 2 GB (64 Bit) RAM

■■ 3.5 GB of available hard disk space

■■ 5400 RPM hard disk drive

■■ DirectX 9 capable video card running at 1024 x 768 or higher-resolution display

■■ DVD-ROM drive (if installing Visual Studio from DVD)

■■ Internet connection to download software or chapter examples

Depending on your Windows configuration, you might require Local Administrator
rights to install or configure Visual Studio 2012.

Code samples

Most of the chapters in this book include exercises that let you interactively try out new
material learned in the main text. All sample projects, in both their pre-exercise and
post-exercise formats, can be downloaded from the following page:

http://aka.ms/VCCLISbS/files

http://aka.ms/VCCLISbS/files

	 Introduction   xxv

Acknowledgments

Producing a book involves a number of people, and I’d like to thank the following in
particular.

I’d like to thank all at Microsoft Press and O’Reilly for their help and support, es-
pecially Devon Musgrave at Microsoft for inviting me to start this project, and Russell
Jones at O’Reilly for providing so much help with writing and editorial matters, and
especially his guidance in using the (not always good-tempered) Word templates.

The technical quality of the book has been greatly improved by Luca Regnicoli, who
as tech reviewer pointed out numerous errors and omissions. I especially value his input
on the Windows Store chapters.

Kara Ebrahim at O’Reilly, along with Dianne Russell and Bob Russell at Octal Publish-
ing, provided excellent editorial support and made sure everything got done on time.

And lastly, I’d like to thank my family, who have put up with all the extra work in-
volved in writing a book, and are probably hoping that this is last one for a while!

Errata and book support

We’ve made every effort to ensure the accuracy of this book and its companion con-
tent. Any errors that have been reported since this book was published are listed on our
Microsoft Press site at oreilly.com:

http://aka.ms/VCCLISbS/errata

If you find an error that is not already listed, you can report it to us through the
same page.

If you need additional support, email Microsoft Press Book Support at mspinput@
microsoft.com.

Please note that product support for Microsoft software is not offered through the
addresses above.

http://aka.ms/VCCLISbS/errata
mailto:mspinput%40microsoft.com?subject=
mailto:mspinput%40microsoft.com?subject=

xxvi   Introduction

We want to hear from you

At Microsoft Press, your satisfaction is our top priority, and your feedback our most
valuable asset. Please tell us what you think of this book at:

http://www.microsoft.com/learning/booksurvey

The survey is short, and we read every one of your comments and ideas. Thanks in
advance for your input!

Stay in touch

Let’s keep the conversation going! We’re on Twitter: http://twitter.com/MicrosoftPress

http://www.microsoft.com/learning/booksurvey
http://twitter.com/MicrosoftPress

		 1

PART I

Getting started with
C++ .NET

CHAPTER 1	 Hello C++! . 3

CHAPTER 2	 Introducing object-oriented programming 13

CHAPTER 3	 Variables and operators . 23

CHAPTER 4	 Using functions . 37

CHAPTER 5	 Decision and loop statements 57

CHAPTER 6	 More about classes and objects 77

CHAPTER 7	 Controlling object lifetimes 103

CHAPTER 8	 Inheritance . 121

		 3

C H A P T E R 1

Hello C++!

After completing this chapter, you will be able to

■■ Recognize C++ functions.

■■ Recognize C++ keywords and identifiers.

■■ Create a C++ application.

Welcome to the exciting world of programming Microsoft .NET with Microsoft Visual C++. This
chapter introduces the C++/CLI language and shows you how to perform simple input/out-

put (I/O).

What is C++/CLI?

C++/CLI is a version of the C++ programming language designed to run on the .NET Framework.
It has been available since Microsoft Visual Studio 2005 and is the subject of an international stan-
dard. You can find details of the ECMA standard at http://www.ecma-international.org/publications/
standards/Ecma-372.htm.

To achieve this, some changes had to be made to standard C++. There are some things that you
can do in standard C++ that are not permitted in C++/CLI (for example, you cannot inherit from
multiple base classes) and there have been some changes to the language geared to support .NET
features (such as interfaces and properties) and to work with the .NET Runtime.

Why would you choose to use C++/CLI to write .NET code instead of another .NET language such
as C#? Apart from personal preference, there are two very good reasons to choose C++/CLI. The first
is for interoperability; C++/CLI makes it simple to incorporate standard C++ code into .NET projects.
The second is that we have a .NET version of the C++ Standard Template Library (STL), and so people
used to coding against the STL will find it possible to work in the same way in .NET.

Even if neither of these reasons applies to you, C++/CLI is still a perfectly good way to learn about
.NET programming because it exposes all of the features that you need to write .NET programs and
explore the .NET platform.

http://www.ecma-international.org/publications/standards/Ecma-372.htm
http://www.ecma-international.org/publications/standards/Ecma-372.htm

4   Microsoft Visual C++/CLI Step by Step

Your first C++/CLI application

It’s time to get our hands dirty with a simple C++/CLI application. Of course, no programming book
would be complete without including the customary “Hello World” application, so let’s start with that.

using namespace System;

int main()
{
 Console::WriteLine("Hello, World!");
 return 0;
}

This short application illustrates some fundamental C++/CLI concepts:

■■ The first line (which begins with using) informs the compiler that you’re using the .NET System
library. Many different libraries could be used in a single project; the using statement specifies
to the compiler which library you want to use.

■■ The rest of the application is an example of a C++ function. All blocks of code in C++ are
called functions—there’s no such thing as a procedure or a subroutine. Each C++ function
contains the header (the first line of this application) and the function body (all of the text
between the braces, { and }). The header shows the return type of the function (in this case
int, short for integer), the name of the function (main), and the list of parameters inside round
brackets. Note that you still need to include the round brackets even if you don’t have any-
thing to pass to the function.

■■ All statements in C++ are terminated with a semicolon.

Of the six lines of code in the example application, only two contain C++ statements: the Console
line and the return line. The Console line outputs characters to the console, and the argument to the
function consists of the string that you want to output. The return line exits from the function—in
this case, the application, because there is only one function—and returns zero, which is the standard
value to return when execution is successful.

The main function
Why is the only function in the previous example called main? The simple answer is that the code
won’t compile if it isn’t! However, it might be more useful to explain how the language works.

A normal C++ application contains many functions (and also many classes, as is discussed in
Chapter 2, “Introducing object-oriented programming”). How does the compiler know which function
should be called first? Obviously, you can’t allow the compiler to just randomly choose a function. The
rule is that the compiler always generates code that looks for a function named main. If you omit the
main function, the compiler reports an error and doesn’t create a finished executable application.

	 Chapter 1  Hello C++!    5

Free-format languages
C++ falls under the category of a free-format language, which means that the compiler ignores
all spaces, carriage returns, new-line characters, tabs, form feeds, and so on. Collectively, these
characters are referred to as white space. The only time the compiler recognizes white space is
if it occurs within a string.

Free-format languages give the programmer great scope for using tab or space indenting
as a way of organizing application layout. Statements inside a block of code—such as a for
loop or an if statement—are typically indented (often by four space characters). This indenta-
tion helps the programmer’s eye more easily pick out the contents of the block.

The free-format nature of C++ gives rise to one of the most common (and least useful) argu-
ments in the C++ community: how do you indent the braces? Should they be indented with the
code, or should they be left hanging at the beginning of the if or for statement? There is no right
or wrong answer to this question (although some hardened C++ developers might disagree), but
a consistent use of either style helps to make your application more readable to humans. As far
as the compiler is concerned, your entire application could be written on one line.

So, the compiler will expect a function named main. Is that all there is to it? Well, not quite. There
are some additional items, such as the return type and parameters being correct, but in the case of
main, some of the C++ rules are relaxed. In particular, main can take parameters that represent the
command-line arguments, but you can omit them if you don’t want to use the command line.

C++ keywords and identifiers
A C++ keyword (also called a reserved word) is a word that means something to the compiler. The
keywords used in the example application are using, namespace, and return. You’re not allowed to use
these keywords as variable or function names; the compiler will report an error if you do. You’ll find
that Visual Studio helps you identify keywords by displaying them in a special color.

An identifier is any name that the programmer uses to represent variables and functions. An identi-
fier must start with a letter and must contain only letters, numbers, or underscores. The following are
legal C++ identifiers:

■■ My_variable

■■ AReallyLongName

The following are not legal C++ identifiers:

Invalid identifier Reason for being invalid

0800Number Must not start with a number

You+Me Must contain only letters, numbers, and underscores (the plus sign is the culprit here)

return Must not be a reserved word

6   Microsoft Visual C++/CLI Step by Step

Outside of these restrictions, any identifier will work. However, some choices are not recommend-
ed, such as the following:

Identifier Reason it’s not recommended

main Could be confused with the function main.

INT Too close to the reserved word int.

B4ugotxtme Just too cryptic!

_identifier1 Underscores at the beginning of names are allowed, but they are not recommended because
compilers often use leading underscores when creating internal variable names, and they are
also used for variables in system code. To avoid potential naming conflicts, you should not use
leading underscores.

Creating an executable application—theory

Several stages are required to build an executable application; Microsoft Visual Studio 2012 helps you
accomplish this by automating them. To examine and understand these stages, however, let’s look at
them briefly. You’ll see these stages again later in the chapter when we build our first application.

Editing the application source files
Before you can create an application, you must write something. Visual Studio 2012 provides an
integrated C++ editor, complete with color syntax highlighting and Microsoft IntelliSense to show
function parameter information and provide word completion.

Compiling the source files
The C++/CLI compiler is the tool for converting text source files into something that can be executed
by a computer processor. The compiler takes your source files (which usually have a .cpp extension)
and builds them into either a stand-alone executable file (with a .exe extension) or a library file to be
used in other projects (with a .dll extension).

Standard C++ and C
If you have ever worked with standard C++ or C, you might be familiar with the idea of compil-
ing to object files and then linking with libraries to build the final executable file—which is
commonly referred to simply as an executable. Although you can compile to the equivalent of
an object file (called a module in the .NET world) and then link those together by using a tool
called the assembly linker, Visual Studio takes you straight from source to executable without
you seeing the intermediate step.

[[Eds: Please check through-
out book to ensure “Visual
Studio .NET” has been replaced
by “Visual Studio 2012” -- it has
been replaced in the preceding
paragraph.]]

	 Chapter 1  Hello C++!    7

Running and testing the application
After you have successfully built the application, you need to run it and test it.

For many development environments, running and testing is often the most difficult part of the
application development cycle. However, Visual Studio 2012 has yet another ace up its sleeve: the
integrated debugger. The debugger has a rich set of features with which you can easily perform run-
time debugging, such as setting breakpoints and variable watches.

Creating an executable application—practice

Go ahead and start Visual Studio 2012. An invitingly blank window appears on your screen.

This window is the powerful Visual Studio integrated development environment (IDE). It contains
all the tools you’ll need to create full-featured, easy-to-use applications.

Note  This book was written by using the Release Candidate (RC) version of Visual Studio
2012. As a result, screen shots and other details might differ from the version you’re using
when you read this.

8   Microsoft Visual C++/CLI Step by Step

Creating a project
The first task is to create a new project for the “Hello, World” program.

1.	 In Visual Studio, on the File menu, point to New, and then click Project. (Alternatively, you can
press Ctrl+Shift+N.)

Note  I am using the Professional version of Visual Studio 2012. If you are using oth-
er versions, the way in which you create a project might be different. For example, in
the Express version, you will find New Project on the File menu.

The New Project dialog box opens.

2.	 In the navigation pane on the left, under Templates, click Visual C++, and then click CLR. In the
center pane, click CLR Console Application and then, toward the bottom of the dialog box, in
the Name box, type HelloWorld.

Note  Depending on how Visual Studio has been set up, you might find Visual C++
under the Other Languages node.

3.	 Click the Location list and select a location for your new project or click Browse and navigate
to an appropriate directory.

	 Chapter 1  Hello C++!    9

4.	 Click OK to create the project.

The wizard correctly initializes all the compiler settings for a console project.

Editing the C++ source code
The wizard creates a project for you with all the files needed for a simple console application. It also
opens the main source file in the editor that contains just the code we want.

Notice that the keywords automatically appear in blue (provided that you spell them correctly).

There are a few things in the automatically generated source code that we don’t need, so let’s
remove them. This will give you some practice in using the editor as well as making the code easier to
understand. The application is not going to receive any command-line arguments when you run it, so
remove everything between the opening and closing parentheses following main—in this example,
array<System::String ^> ^args. In addition, the “L” before the “Hello World” string isn’t necessary
either (for reasons that I’ll explain later), so you can remove that, as well.

Building the executable
The next step is to build the executable. The term build in Visual Studio 2012 refers to compiling and
linking the application. Visual Studio compiles any source files that have changed since the last build
and—if no compile errors were generated—performs a link.

To build the executable, on the Build menu, click Build Solution or press F7.

10   Microsoft Visual C++/CLI Step by Step

Note  The shortcut keys might differ depending on the version of Visual Studio you are us-
ing. For example, in the Ultimate edition, the shortcut is F6.

An Output window opens near the bottom of the Visual Studio window, showing the build prog-
ress. If no errors are encountered, the message Build: 1 succeeded, 0 failed, 0 up-to-date, 0 skipped will
appear in the Output window. If this window is closed, you can open it by selecting Output from the
View menu.

If any problems occur, the Error List window will contain a list of errors and warnings.

You can double-click the error line in the Error List window to place the cursor at the line in the
source file where the compiler encountered the error. Fix the error (you might have misspelled a key-
word or forgotten a semicolon) and rebuild the project. If the Error List pane is closed, you can open
it by selecting Error List from the View menu.

How should you treat warnings?
Always treat warnings as errors—in other words, get rid of them. Warnings are there for a
reason; they’re telling you that your code is not correct.

	 Chapter 1  Hello C++!    11

Executing the application
After you’ve eliminated all errors and you’ve successfully built the project, you can finally execute the
application. On the Debug menu, click Start Without Debugging to run the application. You can also
press Ctrl+F5 to execute the application.

You’ll see the output of your application, with the message “Press any key to continue” at the bot-
tom of the output. This line is added by the IDE so that the console window doesn’t simply disappear
when the application has finished running.

Conclusion

Although the example in this chapter isn’t the most exciting application ever written, it demonstrates
some key C++ development points. It introduces the Visual Studio 2012 IDE and the ability to compile
and link a application, and it serves as an introduction to the C++/CLI language.

Now, there’s no turning back. Every new C++/CLI and Visual Studio 2012 feature that you learn
about will fire your imagination to learn more and be increasingly productive. Software development
is an exciting world.

Finally, don’t forget to have some fun. Go back and try a few variations on the example application,
click a few menus, and take some time to become familiar with the environment.

Quick reference

To Do this

Create a new project in Visual Studio 2012. Click File | New | Project, or press Ctrl+Shift+N. In the Express
version, on the File menu, click New Project.

Add a file to a project. Click File | New | File, or press Ctrl+N.

Build a Visual Studio 2012 project. Click Build | Build Solution, or press Ctrl+Shift+B.

Execute a program from within Visual Studio 2012. Click Debug | Start Without Debugging, or press Ctrl+F5.

		 13

C H A P T E R 2

Introducing object-oriented
programming

After completing this chapter, you will be able to

■■ Describe the key concepts of object-oriented programming.

■■ Understand how these concepts are supported by C++ language constructs.

■■ Understand the major development benefits of object-oriented programming.

■■ Create and use simple classes.

What is object-oriented programming?

Object-oriented programming is a paradigm that provides a natural way to develop many kinds of
systems. We perceive the world as consisting of objects: tables, chairs, computers, cars, bank ac-
counts, football games, and so on. It is a natural human trait to try to organize these objects, arrang-
ing them into some form of classification and choosing to highlight certain features of objects in pref-
erence to others. So, dogs and cats are mammals, toasters and refrigerators are appliances, swimming
and tennis are sports, Toyotas and Fords are cars, trucks and cars are vehicles, and so on.

There can be many levels to these categories and many ways to classify the objects in the world.
How people classify things depends to a large extent on what they want to do with them as well as
the relevant features of the objects themselves. For example, a retailer of household appliances is
likely to use different categories—possibly deeper and richer—for its products than a typical home-
owner. When grouping objects into classification schemes, we also tend to highlight certain attributes
of objects in preference to others. For instance, to an engineer, a car’s color might not matter, but it
might figure heavily in the mental model of car classifications used by a Ferrari salesperson.

Object-oriented programming lets us build hierarchies of objects, creating them and defining how
they are related. As long ago as the 1960s, researchers realized that many computer programs mod-
eled entities that can be named, and that their properties and behavior can be described. Examples of
such objects might be bank accounts, arrays, files, and users, all of which are analogous to objects in
the real world.

14   Microsoft Visual C++/CLI Step by Step

Object-oriented programming can crudely be characterized as identifying the objects relevant
to the problem, organizing them into hierarchies, adding attributes to the objects to describe the
features relevant to the problem context, and adding functions (methods) to the objects such that
they can perform their required tasks. The details are a little more complicated, but essentially, it is a
simple process.

Yet, simple doesn’t necessarily mean easy. A collection of objects could potentially be classified in
many ways. The ability to identify the important attributes of objects and to form good abstractions
and appropriate hierarchies is crucial. Even within the context of a problem domain, it’s sometimes
hard to determine the correct levels of abstraction and suitable classification hierarchies. Just deciding
which class or grouping an object belongs to can be very difficult. As philosopher Ludwig Wittgen-
stein pointed out in his 1953 book Philosophical Investigations, some objects will bear more of a family
resemblance to a concept than others; for example, hockey and tennis are more obviously sports than
are chess and synchronized swimming.

Features of object-oriented programming languages

I’ve already pointed out that object-oriented programming means defining and building hierarchies
of objects and defining their properties and behavior. You can do this to a certain extent in any
programming language, just the same as you could, theoretically, take a trip over the Rockies in a golf
cart, but it is much easier to do object-oriented programming if you use a language that is designed
to support object-oriented programming methods.

Object-oriented programming languages such as C++ and C# are characterized by three key
features: encapsulation, inheritance, and polymorphism. These features support this natural process of
identifying and classifying objects. Let’s take a closer look at each one.

Encapsulation
One of the problems faced by software developers is that the systems we are developing are becom-
ing increasingly larger and more complex. Encapsulation helps to keep things manageable by break-
ing an application down into small, self-contained entities. For example, if you’re building an account-
ing system, you’ll probably need objects to represent accounts and invoices. After you’ve developed
the Account class, you no longer need to worry about the details of the implementation of the class.
You can use the class anywhere in your application in much the same way you would use a built-in
type, such as an integer. The class exposes the essential features of the Account object while hiding
the implementation details.

The account’s name and the state of its balance are some of the attributes of the object in which
the client is interested and needs to know. Details of how the account name is stored—whether it’s
an array of 50 characters or a string object, or the fact that the account’s balance is maintained as a
currency variable—are irrelevant to the client. The process of hiding the data structures and imple-
mentation details of an object from other objects in the system is called encapsulation (sometimes
also known as data hiding), and it prevents the other objects from accessing details about which they

	 Chapter 2  Introducing object-oriented programming    15

don’t need to know. Encapsulation makes large programs easier to comprehend; data hiding makes
them more robust.

Objects can interact with other objects through only their publicly exposed attributes and methods.
The more attributes and methods that are publicly exposed, the more difficult it will be to modify the
class without affecting the code that uses the class. When done properly, the inner workings of a class
can be changed without affecting the code that uses objects created, or instantiated, from that class.
The programmer would have to worry only about the methods in the class that accessed that variable
rather than worry about all the places in the application that an object instantiated from that class
might be called.

Inheritance
The natural tendency for humans to classify objects into hierarchies is useful from a programmer’s
perspective and is supported in object-oriented languages, including C++, by inheritance. Inheri-
tance provides two benefits to the C++ programmer. First, and most important, it lets you build
hierarchies that express the “is a” relationships between types. Suppose that you have two classes,
SavingsAccount and CheckingAccount, both of which are derived from the parent Account class. If
you have a function that requires an Account as an argument, you can pass it a SavingsAccount or
a CheckingAccount because both classes are types of Account. Account is a general classification, and
CheckingAccount and SavingsAccount are more specific types. The second benefit of object-oriented
programming is that classes can inherit features from classes higher in the hierarchy. Instead of devel-
oping new classes from scratch, new classes can inherit the functionality of existing classes and then
modify or extend this functionality. The parent class from which the new class inherits is known as the
base class, and the new class is known as the derived class.

One of the major tasks facing developers is finding appropriate classifications for the objects and
classes in their programs. For example, if you need to develop classes for a driving game, it makes
more sense for you to develop a general car class and then use this class as a base class for specific car
types such as sportscar or truck. These derived classes would then extend or modify the general car
class by adding new attributes and methods or by overriding existing methods. Composing objects
from subobjects—for example, a car consisting of an engine and a chassis—can also simplify the de-
velopment effort. Doing it this way, each of the objects is simpler and therefore easier to design and
implement than the collective whole.

Polymorphism
The third feature of object-oriented programming languages is polymorphism, which is Greek for
“many forms.” It is quite a hard concept to define, so I’ll use some examples to show you what poly-
morphism is and leave the precise definitions to more academic writers.

Polymorphism essentially means that classes can have the same behavior but implement it in
different ways. Consider several different types of vehicle: they all need to be started, so in program-
ming terms, we could say that all vehicles have “start” functionality. Exactly how starting is imple-
mented depends on the vehicle. If it is a Ford Model T, starting will mean manually cranking the

16   Microsoft Visual C++/CLI Step by Step

starting handle at the front of the vehicle, but if it is a modern car, starting will mean turning the key
in the ignition. If the vehicle is a steam locomotive, starting will be a very different and more complex
process, indeed.

As another example, consider the aforementioned SavingsAccount and CheckingAccount types. All
types derived from Account share certain functionality, such as the ability to deposit, withdraw, and
query the balance. They might implement them in different ways because CheckingAccount might
permit an overdraft, whereas SavingsAccount might accrue interest, but they all work the same way.
This means that if I’m passed an Account, it doesn’t matter exactly what type of account it is; I can still
deposit funds, withdraw funds, and query the balance. This functionality is useful in programming
terms because it gives you the ability to work with generic object types—accounts and vehicles—
when you’re not concerned with the way in which each class implements functionality.

Classes and objects

Up to this point in the chapter, the terms “class” and “object” have been used fairly interchangeably.
However, classes and objects aren’t the same thing, and we need to clarify the differences between
these terms. As the name implies, object-oriented programming is about objects. An object is com-
posed of data that describes the object and the operations that can be performed on the object.
However, when you create an application in C++, you define classes, not objects.

A class is a user-defined type; it encapsulates both the data and the methods that work on that
data. With the exception of static functions, you cannot use classes directly. A class is like a template,
which is used to create (instantiate) objects. Just as you have to declare an int variable before you can
use it, you also have to instantiate an object of the class before you can use it.

For example, you would not define an Animal object. Instead, you would define an Animal
class along with its attributes and methods. The class represents the concept, so the Animal class
does not represent a specific animal but the class of all animals. When you want to use an Animal
object, you have to instantiate an Animal object from the class. The class can be considered as the ab-
stract representation of an entity, whereas the instantiation of the class—the object—is the concrete
representation.

Benefits to the development life cycle

There are three key benefits to object-oriented programming: comprehensibility, reusability, and
extensibility. Breaking code down into classes makes it more comprehensible by imposing a structure
as programs grow larger and larger. The ideal is to assemble object-oriented systems from prewritten
classes and to make the required modifications to support the new requirements by using inheritance

	 Chapter 2  Introducing object-oriented programming    17

and composition to derive new classes from the existing classes. The existing classes are reused as
building blocks and not altered in any way. Creating systems from reusable components naturally
leads to higher productivity, which is probably the most frequently cited benefit of object-oriented
approaches. Object-oriented programming should also result in higher-quality systems. When you
reuse classes, it means that you are using code that has already been tested and proven in earlier
projects; thus, it is likely to contain fewer bugs than classes developed from scratch. Over time, any
bugs that might have existed have been found and fixed in these classes, whereas code that is written
from scratch has yet to pass through the same bug detection and fixing process.

The features (encapsulation, inheritance, and polymorphism) of object-oriented programming also
provide benefits. Encapsulation makes it easier to scale up from small systems to large systems. For
the most part, regardless of the size of the system, the developer is simply creating objects. Large sys-
tems might require more objects than small systems, but the level of complexity facing the developer
is not significantly increased. Inheritance helps to improve the flexibility and extensibility of systems,
hence reducing their costs to maintain. Deriving new classes from existing classes provides additional
functionality and makes it possible to extend the software without altering the existing classes.

Finally, data hiding also leads to more secure systems. The state of an object can be modified only
by its publicly exposed methods, which increases the predictability of object behavior.

A simple example

The following simple example should serve to show you how to create a class, instantiate objects, and
access member functions and attributes.

1.	 Start Microsoft Visual Studio 2012.

2.	 On the File menu, point to New, and then click Project.

The New Project dialog box opens.

3.	 In the navigation pane on the left, under Templates, click Visual C++, and then click CLR.

4.	 In the center pane choose CLR Console Application.

5.	 Toward the bottom of the dialog box, in the Name box, type Animals.

6.	 Click the Location box and select a location for the new project (or click Browse to find it), and
then click OK.

18   Microsoft Visual C++/CLI Step by Step

7.	 The file Animals.cpp should already be open in the editor. If it is not, in Solution Explorer, in
the Source Files folder, double-click the Animals.cpp file.

8.	 Immediately under the using namespace System; line, add the following class definition:

ref class Animal
{
 int legs;
 String ^name;
};

To declare a class in C++, you use the keywords ref class followed by a name for the class—
Animal in this example—and then you list all the member variables and functions for the class
between opening and closing braces ({ and }).

So far, you have created an Animal class with an int variable for the number of its legs and a
String variable for its name. As it stands, no other application or class will be able to access
these variables. The members of a class—data and methods—are private by default and can
only be accessed by methods of the class itself. C++ provides three access modifiers, public,
private, and protected, which you use to specify the visibility of the various members of the
class.

9.	 Add the keyword public followed by a colon (:) on a new line between the opening brace and
the first variable declaration.

	 Chapter 2  Introducing object-oriented programming    19

ref class Animal
{
public:
 int legs:
 String ^name;
};

By declaring the variables after the keyword public, you make both of them accessible. How-
ever, it is not usually a good idea to allow other classes and parts of your application access to
the variables of a class.

As discussed earlier in the section on encapsulation, it’s better to keep the implementation
details of a class hidden from users of that class and to control the access to the class’s data
through functions. In the next step, we use the keyword private to prevent direct access to the
String variable of the class. We’ll leave the int variable legs with public access, simply to show
how it can then be directly accessed by the main application.

10.	 Add the keyword private followed by a colon (:) between the first int variable and the second
String variable.

ref class Animal
{
public:
 int legs;
private:
 String ^name;
};

To provide access to the private String variable, public accessor functions and methods need
to be added to the class to allow other functions to manipulate its value.

11.	 After the declaration of the int variable and before the private access modifier, add the follow-
ing method declarations or implementation lines:

void SetName(String ^nm)
{
 name = nm;
}

String^ GetName()
{
 return name;
}

Because these methods are small functions, it’s easiest to declare and implement them as
inline functions. Inline functions are explained further in Chapter 6, “More about classes and
objects,” when we go into classes in greater detail.

20   Microsoft Visual C++/CLI Step by Step

You have probably noticed the ref keyword. This C++/CLI keyword simplifies the interaction with
.NET Framework components. By placing ref in front of the class keyword, the class becomes a man-
aged class. When the object is instantiated, it is created on the Common Language Runtime (CLR)
heap. The lifetime of an object instantiated from the class is managed by the .NET Framework’s gar-
bage collector. When the object goes out of scope, the memory used by the object is garbage-col-
lected automatically. ref classes are known as reference types because the variable does not actually
contain the object; rather it is a pointer to the memory location of the object, known as a handle.

However, there are performance issues to consider when using reference types. The memory has
to be allocated from the managed heap, which could force a garbage collection to occur. In addition,
reference types must be accessed via their handles, affecting both the size and speed of the compiled
application.

Because of these performance issues, the .NET Framework also supports value types. Value types
are objects created on the stack. The variable contains the object itself rather than a handle to the
object. Hence, the variable doesn’t have to be dereferenced to manipulate the object, which of course
improves performance. To declare a value type class, the value keyword should be used instead of
the ref keyword. In this case, the variables would have been created on the stack. Instead of declaring
handles for this class and then creating the objects on the CLR heap, the objects are declared in the
same way as the built-in C++ types, and the member variables are accessed by the dot operator.

Now that you have written the Animal class, your application can use it just as the application
would use a built-in type.

1.	 In the main function, delete the following line:

Console::WriteLine(L"Hello World");

2.	 Declare and create two Animal objects in your main function.

Animal cat, dog;

3.	 Use the member function SetName to assign the names Cat and Dog to the respective cat and
dog objects, and set the legs variable for both objects to 4.

cat.SetName("Cat");
cat.legs = 4;
dog.SetName("Dog");
dog.legs = 4;

To access the member variables and functions of an object, you use the dot operator (.). You
can read this as “set the name of the cat to ‘Cat’,” with the dot operator relating the function
to the object on which it is operating.

Having created a couple of Animal objects and assigned data to them, you are now going to
display that data on the screen.

	 Chapter 2  Introducing object-oriented programming    21

4.	 Add the following lines:

Console::WriteLine("Animal 1");
Console::Write("Name: ");
Console::WriteLine(cat.GetName());
Console::Write("Legs: ");
Console::WriteLine(cat.legs);
Console::WriteLine();
Console::WriteLine("Animal 2");
Console::Write("Name: ");
Console::WriteLine(dog.GetName());
Console::Write("Legs: ");
Console::WriteLine(dog.legs);
Console::WriteLine();

Now, it’s time to build the application.

5.	 On the Build menu, click Build Solution or use the keyboard shortcut F6.

In case you’ve had any problems putting the application together from the fragments in the
preceding steps, the entire application is listed here:

#include "stdafx.h"

using namespace System;

ref class Animal
{
public:
 int legs;

 void SetName(String ^nm)
 { name = nm; }

 String^ GetName() { return name; }
private:
 String ^name;
};

int main(array<System::String ^> ^args)
{
 Animal cat, dog;

 cat.SetName("Cat");
 cat.legs = 4;
 dog.SetName("Dog");
 dog.legs = 4;
 Console::WriteLine("Animal 1");
 Console::Write("Name: ");
 Console::WriteLine(cat.GetName());
 Console::Write("Legs: ");
 Console::WriteLine(cat.legs);
 Console::WriteLine();
 Console::WriteLine("Animal 2");
 Console::Write("Name: ");
 Console::WriteLine(dog.GetName());

22   Microsoft Visual C++/CLI Step by Step

 Console::Write("Legs: ");
 Console::WriteLine(dog.legs);
 Console::WriteLine();
 return 0;
}

6.	 If the build was successful, run the application by clicking Start Without Debugging on the
Debug menu, or use the keyboard shortcut Ctrl+F5.

Quick reference

To Do this

Create a class. Use the keyword class.

Control the visibility of variables and methods. Use the access control keywords public, private, or
protected, followed by a colon (:).

Declare a reference type class. Place the ref keyword before the class specifier.

Declare a value type class. Place the value keyword before the class specifier.

Instantiate a reference type class object. Use the name of the class when declaring an object; for
example:

Animal cat;

		 23

C H A P T E R 3

Variables and operators

After completing this chapter, you will be able to:

■■ Declare (create) variables.

■■ Use the built-in C++ data types.

■■ Use the Microsoft .NET Framework String class.

■■ Assign values to a variable.

■■ Create expressions by using the C++ operators.

■■ Cast (change) the type of a variable.

In Chapter 2 “Introducing object-oriented programming,” you looked at the advantages of object-
oriented programming and developed a simple application to illustrate the creation and use of

classes.

In this chapter, you’ll take a closer look at how to create and use variables, the fundamental data
types of C++, how to access and use classes from the .NET Framework, and how to create expressions
by using C++ operators.

What is a variable?

Variables are locations in memory where data can be temporarily stored for use by the application.
They have a name, a type, and a value. The value of the variable can be changed during the execution
of the application; hence, the name variable. Before you can use a variable, you must declare it: you
must specify its type, and you must give it a name. The type of a variable defines the allowable range
of values that the variable can hold and the operations that you can perform on it.

The fundamental data types

C++ has a built-in set of data types, as outlined in the following table.

24   Microsoft Visual C++/CLI Step by Step

Type Description Comments

bool A Boolean type that can contain the
values true or false

char, __int8 A single-byte integral type, often
used to hold ASCII values

Values can range from –128 to +127.

short, __int16 An integral type; stores whole num-
bers

Values can range from –32,768 to
+32,767. An unsigned short can range
from 0 to 65,535.

int, __int32 An integral type; stores whole num-
bers

Values can range from –2,147,483,648
to 2,147,483,647. An unsigned int can
range from 0 to 4,294,967,295.

long An integral type like int, except on
many compilers, it’s twice the size

In Microsoft Visual C++, the long is
the same size as the int. Therefore,
it can only store the same range of
values.

long long, __int64 An integral type Values can range from
–9,223,372,036,854,775,808 to
9,223,372,036,854,775,807.

float Stores floating-point numbers; for
example, 3.7

In Visual C++, the float stores up to
seven decimal places. The range of
values is 3.4E+/-38.

double Stores floating-point numbers like the
float but with greater precision and
more accuracy

The double can store up to 15
decimal places. The range of values is
1.7E+/-308

wchar_t A wide character or multibyte char-
acter type

In some cases you’ll see that there is a C++ name (for example, int) and a Microsoft-specific
equivalent (__int32). The two names are equivalent, and it is most common to use the C++ name.

From these built-in types, you can construct other types, as you’ll see in this chapter:

■■ Handle types; for example, int^

■■ Array types; for example, int[]

■■ Reference types; for example, double%

Or, you can construct user-defined types by creating data structures and classes. Classes were in-
troduced in Chapter 2 and are elaborated upon in Chapter 6, “More about classes and objects.” Data
structures (structs) are covered in Chapter 9, “Value types.”

C++/CLI data types
If you have ever looked at C++ outside the Microsoft .NET environment, there is one big dif-
ference of which you need to be aware. In “classic” C++, the sizes of the basic data types are
not fixed: an int can be 4 bytes, 8 bytes, or indeed any size that makes sense for the platform
on which it is running. In the .NET version, the sizes of the basic types are fixed so that (for
example) ints are always 32 bits.

	 Chapter 3  Variables and operators    25

Declaring a variable

As I mentioned earlier, you must declare variables before you can use them. A simple declaration
consists of a type, followed by one or more variable names separated by commas and terminated by
a semicolon, as shown in the following example:

int primeNumber;
double x, y, z;

You can give each variable a qualifier before the type (for example, unsigned). You can also place
an initializer after the variable name to give it an initial value (for example, int i = 0). The qualifier and
the initializer are optional and are not required to appear in the declaration, but the base type and
variable name must be present. The declaration is terminated by a semicolon.

[qualifier] type name [initializer];
unsigned int i; // An unsigned integer variable i, note the
 // qualifier limiting the variable to
 // positive numbers.
long salary = 0; // A long variable initialized to zero.
double y; // A double variable without qualifier or
 // initializer.

When you declare a variable, the compiler does the following

■■ Allocates enough memory to store the variable of that type and to associate the name of the
variable with that memory location.

■■ Reserves the name of the variable to prevent it from being used by other variables within the
same scope.

Note  Scope refers to that part of the code for which a variable is visible—in other
words, where it can be used. The concept of scope is explained more in Chapter 4,
“Using functions.”

■■ Ensures that the variable is used in a way consistent with its type. For example, if you have
declared a variable as a char, you can’t store the value 3.7 in it.

Variable naming
A C++ variable name can be any combination of letters, numbers, and underscores, as long as the
first character of the variable name is a letter or an underscore. Although C++ does not place any re-
strictions on your choice of variable names, they should be meaningful, and you should be consistent
in your naming conventions to increase the readability of your code. C++ is case-sensitive. This means
that myvariable and myVariable are two separate variables. However, it’s not a good idea to differen-
tiate variables solely on the basis of case; doing so could lead to confusion. It would be easy to type a
letter in the wrong case and end up using a completely wrong variable!

26   Microsoft Visual C++/CLI Step by Step

Note  As is mentioned in Chapter 1, “Hello C++!,” it’s not a good idea to create identifiers
that begin with two underscores or an underscore followed by a capital letter (for example,
_A). Microsoft uses this naming convention to specify macros and Microsoft-specific key-
words, so starting your variables with these combinations could lead to name conflicts.

Declaring multiple variables

You can declare several variables of the same type in the same statement simply by separating them
with commas, as demonstrated in the following:

int x = 10, y, z = 11;

This statement creates three integers called x, y, and z. The first integer is initialized to 10 and the
third to 11, whereas the second is not initialized.

Assigning values to variables

You assign a value to a variable by using the assignment operator = (the equal sign). The value on the
right side of the operator is stored in the variable, which is on the left side. When assigning a value to
a variable, the value must belong to the same type as the variable, it must be a type for which C++
will perform an assignment conversion (such as between float and integral types), or it must be explic-
itly converted (cast) to the correct type.

Assignment conversions
Assignment conversions occur when variables on opposite sides of an equal sign are of dif-
ferent types and the compiler can convert between the two types without any possible loss
of data. For instance, assigning an int to a double results in an assignment conversion because
conceptually all the compiler has to do is to add .0 to the integer to make the conversion.

You might occasionally need to force the compiler to perform a conversion that it other-
wise wouldn’t do. For example, dividing two integers results in an integer result: if you want a
floating-point result, you can instruct the compiler to convert one of the values to a double, as
illustrated here:

double result = double(640) / 480;

You give the name of the type to which to convert, followed by the value in parentheses.
This process is called casting, and it can be rather dangerous because you’re directing the
compiler to apply a conversion that it otherwise would not do, and you’d better be sure you’re
correct.

	 Chapter 3  Variables and operators    27

int x;
float y;
double z;
x = 1;
z = x;
y = 3.56;
x = y; // Assignment conversion from float to int
 // results in loss of data.
 // The integer 3 is stored in the variable x.

In this final case the compiler will generate the warning “C4244: ‘=‘ conversion from ‘float’ to
‘int’ possible loss of data.” The reason for this is because the assignment to an integer will lose
the fractional part, so 3.56 will be truncated to 3.

Handles and pointers

In standard C++, a pointer is a variable that holds the memory address of another variable or func-
tion, which means that you can use a pointer to refer indirectly to a variable.

In C++/CLI, however, the runtime is managing memory on your behalf, and it reserves the right to
move things around to maximize the available free memory. This means that an object might not stay
at the same address throughout its lifetime; thus, the address stored in your pointer might become
out of date, leading to problems if you try to use it.

For this reason pointers, in the traditional C++ sense, are not used in C++/CLI. Instead, you use
handles (also known as tracking handles), which also contain the address of a variable but which will
be updated by the runtime if it has to move the variable around.

Although a handle contains an address and therefore can store a memory address of any data
type, handle variables are declared to be data-type specific. A handle to a Person object can’t store
the address of an Account. A handle variable is declared in the same way as the data-type variable,
but the handle operator ^ (caret character) is prepended to the variable name:

Person ^pp; // handle to a Person
Account ^ac; // handle to an Account

Note  It is in fact possible to use pointers in some circumstances in C++/CLI, but that is be-
yond the scope for this introductory discussion.

You typically create an object dynamically and obtain a handle to it by using the gcnew operator,
as illustrated here:

Person ^pp = gcnew Person("Fred");

28   Microsoft Visual C++/CLI Step by Step

This code instructs the runtime to create a new Person object, passing in the string “Fred” as initial-
ization data, and return a handle to the object it has created.

When you access a member of an object through a handle, you use the pointer operator (->),
which is discussed in more detail in the following chapters.

Arrays

An array is a collection of data-storage locations, each of which holds the same type of data, such as
all integers or all doubles. Arrays are very useful when you want to represent a collection of values
(such as the number of days in each month or the names of company employees) and you know how
many you need to store.

Unlike classic C++, arrays in C++/CLI are objects that know how much data they are managing. This
makes them safer than traditional C++ arrays because any attempt to read or write past the end of
the array results in a run-time error, but does not corrupt memory.

Each storage location is called an element of the array. Elements of the array are accessed by an
index, which starts at zero and continues up to one less than the array bound. Why not start the index
from one? This is to preserve compatibility with other C-type languages, which all start array indexing
from zero.

To declare an array, you need to specify the type of item that you are going to store. You create
array objects dynamically by using the gcnew operator.

array<int> ^arr = gcnew array<int>(10); // Declare an array of ten integers.
int x;
arr[0] = 23; // The first element in the array starts at offset 0
arr[9] = 21; // The last element in the array starts at offset 9
x = arr[0]; // Use an element from the array

Constants

Like variables, constants are named data-storage locations. However, unlike a variable, the value of
a constant can’t be changed after it has been declared. It has to be initialized when it’s created and
can’t be assigned a new value later. C++ has two types of constants: literal and symbolic.

A literal constant is simply a value typed into the application. The statements in the following code
assign the literals 40 and Dog to the respective variables noOfEmployees and name:

noOfEmployees = 40;
name = "Dog";

A symbolic constant is a constant that is represented by a name. You define it in exactly the
same way as a variable, but the qualifier must start with the keyword const and the variable must be

	 Chapter 3  Variables and operators    29

initialized. After declaration, you can use the constant name anywhere that you can use a variable of
that type, as shown in the following:

const unsigned long noOfFullTimeEmployees = 49;
const unsigned long noOfPartTimeEmployees = 234;
unsigned long noOfEmployees;
noOfEmployees = noOfFullTimeEmployees + noOfPartTimeEmployees;

There are a couple of advantages to using symbolic constants rather than literal constants:

■■ The symbolic names make the application more readable. The symbolic constant noOfFull
TimeEmployees is more meaningful than the literal constant 49.

■■ It’s easier to change a single symbolic constant declaration than to find and replace all occur-
rences of a literal in a application.

However, using symbolic constants instead of literals can be taken too far. It is not necessary to re-
place all literals with constants. There are some constants that are intuitively obvious to everyone and
that are not going to change; for example, the number of days in a week or months in a year. These
values can be left as literals without reducing the readability or maintainability of the code.

Typedefs

A typedef is a user-defined synonym for an existing type. To create a synonym for a type, you use
the keyword typedef followed by the name of the type and the new name you are defining. Because
typedef is a C++ statement, you also need a closing semicolon:

typedef unsigned int positiveNumber;

This typedef declares positiveNumber to be a synonym of unsigned int and can be used in a decla-
ration instead of the actual type name:

positiveNumber one, two;

The .NET Framework String class

The String class is not a built-in data type like int or long; it is a part of the .NET Framework. Because
String isn’t a built-in type, you must include some files in your project before the compiler will let
you use it. Code that wants to use the String class needs to include the following line at the top of its
source code file:

using namespace System;

This line makes it easier to use certain .NET classes. Because String is in the System namespace, its
full name is System::String, but a using namespace statement such as this makes it possible for you to
use the name without qualification. This will be explained in more detail later on.

30   Microsoft Visual C++/CLI Step by Step

The String class contains a large number of methods to simplify manipulating strings, such as Insert
and Replace.

Note  After you initialize a String object, it is immutable: It can’t be changed after it is cre-
ated. The member functions of the String class that appear to alter strings, such as Insert
and Replace, actually return a new String object, which contains the modified string. If you
need to make repeated changes to a string, you should use the StringBuilder class, adding a
using namespace statement for the System::Text namespace to simplify access.

Operators and expressions

Expressions are built by using operators that work with data—the operands—to give a result. Look at
this example:

remuneration = salary + bonus;

Here the addition operator + (plus sign) is used to add the operands salary and bonus, and the as-
signment operator = (equal sign) is used to store the total in the remuneration variable.

Assignment operators
You use an assignment expression to assign a value to a variable. All expressions return a value when
evaluated, and the value of the assignment expression becomes the new value of the object on the
left side. This functionality makes it possible to assign the same value to a group of variables.

noOfMammals = noOfDogs = noOfCats = 0;

In this example, all three variables—noOfMammals, noOfDogs, and noOfCats—are set to 0.

Arithmetic operators
C++ has 12 arithmetic operators, 5 of which operate like the standard mathematical operators: the
addition operator + (the plus sign), the subtraction operator – (the minus sign), the multiplication
operator * (the asterisk), the division operator / (the slash), and the modulus operator % (the percent
sign), which returns the remainder after division.

result = 4 + 2 - 3; // result = 3
result = 4 * 5; // result = 20
remainder = 7 % 3; // remainder = 1

In addition, there are a number of arithmetic assignment operators, each of which consists of the
operator and the = (equal sign): so the addition assignment operator += is a plus sign with an equal

	 Chapter 3  Variables and operators    31

sign, and we also have –=, *=, /=, %=. These operators are shorthand forms that combine the cor-
responding mathematical operation with the assignment operation. So, the following two statements
are identical:

a = a + 5;
a += 5;

The addition assignment operator is a shortcut operators; thus, there is no difference between the
two statements. In both statements, an addition is performed, followed by an assignment. The second
form is just a shorter way of expressing a frequently used operation.

The increment and decrement operators are similar shorthand operators, but these operators only
add or subtract 1 from the value of the variable.

a++; // Adds 1 to the value of the variable a
a--; // Subtracts 1 from the value of the variable a

There are two forms of the increment and decrement operators: the prefix form ++a or – –a, and
the postfix forms a++ or a– –. Although both forms add or subtract 1, in the prefix form, the math-
ematical operation is performed before the variable is used in the expression; in the postfix form, the
variable is incremented or decremented after the variable has been used in the expression.

int a, b, c;
a = b = c = 0;
b = ++a; // a = 1, b = 1
c = a++; // c = 1, a = 2

In this code fragment, the final values of the variables are a = 2, b = 1, and c = 1. The prefix incre-
ment operator expression added 1 to the value of a before assigning the value of the variable a to
the variable b. The postfix increment operator expression assigned the value of the variable a to the
variable c and then incremented the value of the variable a by 1.

Relational and logical operators
Relational operators are used to compare two values or expressions, returning a value of true or false.
C++ has six relational operators, as shown in the following code:

a > b // returns true if a is greater than b.
a >= b // returns true if a is greater than or equal to b.
a < b // returns true if a is less than b.
a <= b // returns true if a is less than or equal to b.
a == b // returns true if a is equal to b.
a != b // returns true if a is not equal to b.

A logical operator is used to relate two relational expressions. C++ has three logical operators: the
AND operator && (two ampersands), the OR operator || (two pipes), and the NOT operator ! (an excla-
mation point). The AND operator relates two expressions, both of which must be true for the operator
to return a true value. The OR operator returns true if either of the two expressions evaluates to true.

32   Microsoft Visual C++/CLI Step by Step

a && b // returns true if both a and b are true
(a > b) && (a < c) // returns true if a is greater than b and a
 // is less than c
a || b // returns true if either a or b are true
(a > b) || (a < c) // returns true if either a is greater than b
 // or a is less than c

The evaluation of a relational expression stops as soon as the logical value of the whole expression
is determined, a feature known as short-circuit evaluation. For example, the expression expr1 && expr2
is true only if both expr1 and expr2 are true. If expr1 is false, the final value of the expression must be
false, and therefore, expr2 is not evaluated.

The NOT operator returns the negation of the Boolean value of its operand:

!a // returns false if a is true
 // returns true if a is false

These operators are most often used in decision or loop structures, which are discussed in Chapter
5, “Decision and loop statements.”

Bitwise operators
C++/CLI has six bitwise operators: the AND operator & (an ampersand), the OR operator | (a verti-
cal bar), the exclusive OR operator ^ (a caret), the complement operator ~ (a tilde), the right-shift
operator >> (two right angle brackets), and the left-shift operator << (two left angle brackets). These
operators work on the individual bits of the byte and can only be applied to integral operands—the
types char, short, int, and long. The bitwise AND operator compares the bits of two operands; if the bit
in the same position for each operand is 1, the resulting bit is 1; if, however, either bit is 0 the result-
ing bit is set to 0. This operator is often used to mask off bits.

The bitwise OR operator compares the bits of two operands. If either bit is 1, the corresponding bit
of the result is 1, and if both bits are 0, the corresponding bit of the result is set to 0. The bitwise OR
operator is often used to turn on bits, flags, or options.

The exclusive OR operator sets the result bit to 1 only if one of the operands has the correspond-
ing bit set to 1. If the corresponding bit of both operands is 1 or 0, the bit is set to 0.

The complement operator reverses the bit setting of the operand. If the bit is 1, it is set to 0; if the
bit is 0, it is set to 1.

The left-shift operator moves the bit pattern of its left operand to the left by the number of bits
specified by its right operand. The bits vacated by the left shift are filled with zeros. The right-shift
operator moves the bit pattern of its right operand to the right by the number of bits specified by its
right operand. If the variable is an unsigned data type, the vacated bits will be filled with zeros; if the
variable is signed, the vacated bits will be filled with the sign bit.

int a;
a = 5;
a = a << 2; // The bits of a will be shifted two bits to the left
 // and the value of 20 assigned to a.

	 Chapter 3  Variables and operators    33

a = 5;
a = a >> 2; // The bits of a will be shifted two bits to the
 // right and the value of 1 assigned to a.

The ternary operator
The ternary operator ?: (a question mark and a colon) acts like an inline if statement. (See Chapter 5
for more information on if statements.) The expression to the left of the question mark is evaluated;
if it is true, the value or expression between the question mark and the colon will be returned. If it is
false, the value or expression after the colon will be returned.

int a;
bool b;
b = true;
a = b ? 1 : 2; // b is true, so a is assigned 1.
b = false;
a = b ? 1 : 2; // b is false, so a is assigned 2.

Type casting
C++/CLI supports the C-style cast operator, whereby the type to which you want to convert the ex-
pression is placed in parentheses in front of the expression; for example, (float) 7. It also supports five
C++ cast operators:

■■ static_cast<>

■■ const_cast<>

■■ dynamic_cast<>

■■ safe_cast<>

■■ reinterpret_cast<>

The static_cast<> operator changes the data type of the variable, with the type to which you want
to cast being placed in the angle brackets. For example, if an expression needs to convert an int to a
double, the number should be cast by using the static_cast<double> operator. Here’s an example:

int a = 10;

double b;

b = (int) a; // old C-style cast

b = static_cast<double>(a); // C++ static cast

You use the dynamic_cast<> operator to cast objects down or across the inheritance hierarchy. The
const_cast<> operator works with pointers, and references can be used to add or remove the const
qualification of the variable. The safe_cast<> operator is an extension added to C++/CLI; it performs

34   Microsoft Visual C++/CLI Step by Step

the same function as dynamic_cast<> but throws an exception if the cast fails. Using the reinterpret_
cast<> operator, you can convert any pointer to a pointer of another type. This particular operator is
not used that often in application code.

Operator precedence and associativity
There are two ways by which the expression 2 + 3 * 4 could be evaluated: It could be evaluated as (2
+ 3) * 4, yielding a value of 20, or it could be evaluated as 2 + (3 * 4), yielding a value of 14.

The rules of operator precedence specify an unambiguous evaluation of expressions. Operators
higher in the hierarchy are given precedence over operators lower in the hierarchy. Because the *
operator is higher than the + operator, the second interpretation of the above expression, 2 + (3 * 4),
would be evaluated. For situations in which two operators are at the same level in the hierarchy, the
order of evaluation proceeds from left to right. Hence, 2 * 3 / 2 * 3 would be evaluated as ((2 * 3) /
2) * 3, giving a value of 9. Parentheses can be used to group operators and override the precedence
hierarchy. For example, (2 * 3) / (2 * 3) results in a value of 1. Many people use parentheses even when
they are not strictly required, simply to clarify their intentions. The following table shows the hierarchy
of precedence from highest to lowest. Operators in the same row of the table share the same level of
precedence.

Operator Name

:: [] () Scope resolution, subscripting, function calls

static_cast<>
const_cast<>
dynamic_cast<>
reinterpret_cast<>
safe_cast<>

Casting operators

sizeof ++ –– ^ ! – + & * sizeof(), increment, decrement, complement, not, unary
minus, unary plus, address of, dereference

* / % Arithmetic operators

+ -

<< >> Bit-shifting operators

< <= => > Logical inequality operators

== !=

& Bitwise AND

^ Exclusive OR

| Bitwise OR

&& Logical AND

|| Logical OR

?: Ternary operator

= += -+ *= /= %= <<= >>= &= != ^=

, Comma

	 Chapter 3  Variables and operators    35

Quick reference

To Do this

Declare a variable. Specify the type, followed by spaces and then the variable
name, followed by a semicolon. For example:

int number1;
long longNumber1;

Assign values to a variable. Use the assignment operator =.

Group homogenous data together. Use an array.

Prevent data from being changed. Make the variable a constant. For example:

const int x = 10;

Restrict the values a variable can accept to a small set. Declare an enumerated constant, and declare the variable
to be of that type.

Access a String class. Use the .NET String class.

Convert one data type to another. Use the static_cast<> operator.

Override default operator precedence, or make the code
more readable.

Use parentheses to group operators.

		 37

C H A P T E R 4

Using functions

After completing this chapter, you will be able to:

■■ Declare function prototypes.

■■ Define function bodies.

■■ Call functions.

■■ Deal with local and global variable scope.

■■ Define and use overloaded functions.

By now, you should be fairly comfortable with basic C++/CLI syntax. You’ve seen how to declare
variables, write statements, use operators, and perform simple console output. However, as your

programs begin to grow larger, you need to organize your code to cope with the growing complexity.

In this chapter, you’ll learn how to divide a C++/CLI application into functions. First, you’ll see how
to declare function prototypes to introduce the functions to the compiler. Next, you’ll see how to
define function bodies to carry out the required processing. For example, you might write a function
to calculate the expected growth on an investment or to extract the user’s password from a logon
screen. Finally, you’ll see how to call a function from elsewhere in your application.

Why use functions?
There are many good reasons for dividing an application into functions. Here are three of them:

■■ Each function is usually quite short and discrete. It’s easier to write an application as a
series of functions than as a single, long script because you can concentrate on one func-
tion at a time.

■■ It’s also easier to read and debug an application that contains lots of small functions than
one that contains a single, long function because you don’t have to remember what the
entire application is doing.

■■ Functions are reusable. After you’ve written a function, you can call it whenever you need
it in your application, which reduces coding effort and therefore improves developer
productivity.

38   Microsoft Visual C++/CLI Step by Step

Declaring function prototypes

A function prototype is a single-line statement that introduces the name of a function to the com-
piler. The prototype also indicates what types of parameters can be passed into the function and
what type of value the function returns. The combination of information about a function’s name and
parameters is called the function signature.

Declaring a simple function prototype
The following example shows a simple function prototype:

void DisplayWelcome();

In this example, the name of the function is DisplayWelcome. The parentheses are required to indi-
cate that this is a function. The parentheses are empty in this example, which means that the function
doesn’t take any parameters. The void keyword at the beginning of the function prototype indicates
that the function doesn’t return a value; presumably, the function just displays a welcome message on
the screen.

Note  Some programming languages differentiate between functions (which return a value)
and subroutines (which do not return a value). For example, Microsoft Visual Basic .NET
uses the Function keyword for functions and the Sub keyword for subroutines. C++ only has
functions; use the void return type if the function doesn’t return a value. Also, notice the
semicolon at the end of the function prototype. The semicolon is a statement terminator,
and it marks the end of the function prototype. A function prototype doesn’t give you any
indication as to what the function does; it just provides the function signature.

A note on function naming
Some languages have very strong naming conventions that guide how you should construct
function and variable names. C++ has never had such a universal convention, but if you’re
writing C++/CLI code, you would be wise to adopt the convention used in the Microsoft .NET
libraries. Function names should start with a capital letter, and individual words within the name
should also be capitalized, as in DisplayWelcome or CreateNewCustomerOrder. The exception to
this convention is the entry point main, which is traditionally typed in lowercase letters.

In this exercise, you will declare a simple function prototype in a C++/CLI application. The function
does not take any parameters, and it does not return a value, either.

1.	 Start Visual Studio 2012 and create a new CLR Console Application project named
InvestmentPlanner.

After the project is created, the source file appears in the editor window.

	 Chapter 4  Using functions    39

2.	 At the top of the file, immediately below the using namespace System; line, add the following
function prototype:

void DisplayWelcome();

This line is the function prototype you saw earlier. You place function prototypes near the top
of the source file so that they are visible to the rest of the code in the file.

3.	 On the Build menu, click Build Solution to build your application and check that there are no
syntax errors.

There’s no point in running the application yet because you haven’t implemented or called the
DisplayWelcome function. You’ll do that later in this chapter.

Declaring parameters in a function prototype
Functions can take parameters to make them more generic. You must declare the data types for these
parameters in the function prototype.

In this exercise, you will declare a function prototype that uses parameters.

1.	 Continue working with the project you created in the previous exercise.

2.	 Add the following function prototype immediately below the void DisplayWelcome() line:

void DisplayProjectedValue(double amount, int years, double rate);

This function prototype declares a function named DisplayProjectedValue. The function takes
three parameters: a double, an int, and another double. The compiler uses this information to
ensure that the function is always called with the correct number and types of parameters.

Tip  Parameter names are optional in the function prototype. Strictly speaking, you
could omit the parameter names and just specify the parameter types. However, pa-
rameter names help to convey the meaning of the parameters, so it’s good practice
to use them.

3.	 Build your application to check the syntax.

Declaring the return type in a function prototype
As well as specifying input parameters for a function, you must also specify a return type for the func-
tion. As you saw earlier, the void return type indicates that the function does not return a value.

In this exercise, you will see how to specify a non-void return type for a function.

1.	 Continue working with the project from the previous exercise.

2.	 Add the following function prototype immediately below the void DisplayProjectedValue() line:

double GetInvestmentAmount();

40   Microsoft Visual C++/CLI Step by Step

This function prototype declares a function named GetInvestmentAmount. The function
doesn’t take any parameters, but it returns a double.

3.	 Add another function prototype as follows, immediately below the double GetInvestment
Amount() line:

int GetInvestmentPeriod(int min, int max);

This example shows how to declare a function that takes parameters and returns a value. The
GetInvestmentPeriod function takes two int parameters and returns an int.

Note  The parameter types and return type are independent of one another. The
fact that the GetInvestmentPeriod parameters and return type are all ints is entirely
coincidental. It’s quite easy to imagine a function whose parameter types and return
type are different, as shown in this example:

double CalculateAverageValue(int number1, int number2);

4.	 Build your application.

Declaring default values for function parameters
When you declare a function prototype, you can specify default values for some or all of its parame-
ters. Default values are useful for parameters that usually have the same value each time the function
is called. Specifying a default value for a function parameter means that you can omit the parameter
value when you call the function; the compiler will substitute the default value on your behalf.

In this exercise, you will define default parameters in one of the function prototypes you declared
earlier.

1.	 Continue working with the project from the previous exercise.

2.	 Find the following function prototype:

int GetInvestmentPeriod(int min, int max);

3.	 Modify the function prototype as follows to define default parameter values:

int GetInvestmentPeriod(int min=10, int max=25);

This function prototype has two parameters named min and max. The parameters are fol-
lowed by = (the equal sign) and then a default value. We have defined a default value of 10
for the min parameter and a default value of 25 for the max parameter. You’ll see how to call
this function in the section “Calling functions” later in this chapter.

4.	 Build your application.

	 Chapter 4  Using functions    41

Defining function bodies
In the previous section, you learned how to declare function prototypes. Recall that a function
prototype specifies the name of a function, its parameter list, and its return type. However, function
prototypes do not contain any executable statements; they do not inform you as to what the function
will do when it is called.

To provide the behavior for a function, you must define a function body. The function body con-
tains executable statements to perform the desired operations in the function. In this section, you will
define function bodies for all the function prototypes introduced earlier.

Defining a simple function body
The following example shows a simple function body, corresponding to the DisplayWelcome function
prototype from earlier in chapter:

void DisplayWelcome()
{
 Console::WriteLine("---------------------------------------");
 Console::WriteLine(
 "Welcome to your friendly Investment Planner");
 Console::WriteLine("---------------------------------------");
 return;
}

Notice that the first line of the function body is identical to the function prototype, except that
there is no semicolon. This first line is known as the function header.

After the function header, a pair of braces ({}) encloses the executable statements for the func-
tion body. In this example, the DisplayWelcome function displays a simple welcome message on the
screen. In the next two sections you’ll see more complex functions that perform console input and
mathematical calculations.

The return keyword at the end of the function causes flow of control to return to the calling func-
tion. In this example, the return keyword is superfluous because the closing brace of the function acts
as an implicit return. However, you can use return in other locations in a function, such as within an if
statement, to return prematurely from a function. You’ll see more about the if statement in Chapter 5,
“Decision and loop statements.”

In this exercise, you will add the DisplayWelcome function body to your C++/CLI application.

1.	 Continue working with the project you created earlier in this chapter.

2.	 Locate the end of the main function. On the next line, define the DisplayWelcome function
body as follows:

void DisplayWelcome()
{
 Console::WriteLine("--------------------------------");
 Console::WriteLine(
 "Welcome to your friendly Investment Planner");

42   Microsoft Visual C++/CLI Step by Step

 Console::WriteLine("---------------------------------");
 return;
}

3.	 Build your application. You shouldn’t get any compiler errors.

Note  You can define function bodies in any order in C++/CLI. For example, you can place
the DisplayWelcome function body before or after the main function body. However, func-
tions cannot be nested. You can’t define one function body inside the braces ({}) of another
function.

Defining a function body that uses parameters
When you define a function body that uses parameters, you must define exactly the same number
and types of parameters as in the function prototype. This is quite reasonable: The whole point of the
function prototype is to introduce the exact signature of the function.

Tip  The function body can use different parameter names than the prototype because the
parameter names in the prototype are there just for documentation. However, for consis-
tency, you should use the same parameter names in the prototype and the function body.

In this exercise, you will define a function body for the DisplayProjectedValue function. You saw the
prototype for this function earlier.

void DisplayProjectedValue(double amount, int years, double rate);

The function body will have the same signature as the prototype and will calculate the projected
value of an investment after a specified number of years at a particular growth rate.

1.	 Continue working with the project from the previous exercise.

2.	 Scroll to the end of the source code and add the following lines—this is the start of the
DisplayProjectedValue function body:

void DisplayProjectedValue(double amount, int years, double rate)
{

3.	 Define some local variables within the function:

 double rateFraction = 1 + (rate/100);
 double finalAmount = amount * Math::Pow(rateFraction, years);
 finalAmount = Math::Round(finalAmount, 2);

Here, the rateFraction variable holds the growth rate as a fractional value. For example, if the
rate is 6 percent, rateFraction will be 1.06.

	 Chapter 4  Using functions    43

The expression Math::Pow(rateFraction, years) shows how to raise a number to a power in
C++/CLI. For example, Math::Pow(1.06, 3) is equivalent to 1.06 * 1.06 * 1.06.

The expression Math::Round(finalAmount, 2) rounds finalAmount to two decimal places. For
example, if finalAmount is 1000.775, the rounded value will be 1000.78.

4.	 Add the following statements to the function to display the result of the calculations:

 Console::Write("Investment amount: ");
 Console::WriteLine(amount);
 Console::Write("Growth rate [%]: ");
 Console::WriteLine(rate);
 Console::Write("Period [years]: ");
 Console::WriteLine(years);
 Console::Write("Projected final value of investment: ");
 Console::WriteLine(finalAmount);
 return;
}

5.	 Build your application.

Defining a function body that returns a value
When you define a function with a non-void return type, you must return an appropriate value from
the function. To return a value, use the return keyword followed by the value that you want to return.

Note  If you forget to return a value, you’ll get an error when the compiler reaches the clos-
ing brace of the function. This point is where the compiler realizes you haven’t returned a
value from the function.

In this exercise, you will define a function body for the GetInvestmentAmount function. Here is the
prototype for the function, as you saw earlier:

double GetInvestmentAmount();

The function asks the user how much money she wants to invest. It returns this value as a double
data type.

You will also define a function body for the GetInvestmentPeriod function. The prototype for this
function is as follows:

int GetInvestmentPeriod(int min=10, int max=25);

The function asks the user how long she wants to invest the money. It returns this value as an int
value.

1.	 Continue working with the project from the previous exercise.

44   Microsoft Visual C++/CLI Step by Step

2.	 Scroll to the end of the source code and define the GetInvestmentAmount function body as
follows:

double GetInvestmentAmount()
{
 Console::Write("How much money do you want to invest? ");

 String ^input = Console::ReadLine();
 double amount = Convert::ToDouble(input);
 return amount;
}

The first statement displays a prompt message on the console, asking the user how much
money she wants to invest. The Console::ReadLine function call reads a line of text from the
keyboard, and the result is assigned to a String variable.

The Convert::ToDouble function call parses the String and converts it to a double value. The
return statement returns this value back to the calling function.

Tip  You can declare local variables anywhere in a function. For example, here the
input and amount variables are declared halfway down the GetInvestmentAmount
function. Typically, you should declare variables at the point where they are first
needed in the function, which is different from the C programming language, for
which you have to declare local variables at the start of a block.

3.	 Add the following function body:

int GetInvestmentPeriod(int min, int max)
{
 Console::Write("Over how many years [");
 Console::Write("min=");
 Console::Write(min);
 Console::Write(", max=");
 Console::Write(max);
 Console::Write("] ? ");

 String ^input = Console::ReadLine();
 int years = Convert::ToInt32(input);
 return years;
}

The Console::Write function calls ask the user to enter a value between min and max. These
values are supplied as parameters into the GetInvestmentPeriod function.

The Console::ReadLine function call reads the user’s input as a String, and the Convert::ToInt32
function call converts this value into a 32-bit integer. The return statement returns this value
to the calling function.

	 Chapter 4  Using functions    45

Note  The function prototype for GetInvestmentPeriod declared default values for
the min and max parameters. The default value for min is 10, and the default value
for max is 25. Default values are specified only in the function prototype—you don’t
mention these default values in the function body. If you accidentally define the
default values in the function body as well as in the function prototype, you’ll get a
compiler error at the function body.

4.	 Build your application.

Calling functions
Now that you have defined all the function bodies in the sample application, the last step is to call the
functions at the appropriate place in the application.

To call a function, specify its name followed by a pair of parentheses. For example, you can call the
DisplayWelcome function as follows:

DisplayWelcome();

This is a simple example because the function doesn’t take any parameters or return a value.

If you want to call a function that returns a value, you can assign the return value to a variable. The
following example calls the GetInvestmentAmount function and assigns the return value (a double) to
a local variable named sum:

double sum = GetInvestmentAmount();

Note  You can ignore the return value from a function if you want. When you call the func-
tion, leave out the assignment operator on the left side of the function name. The function
still returns the value, but the value is discarded.

If you want to call a function that takes parameters, pass the parameter values between the paren-
theses in the function call. The following example calls the DisplayProjectedValue function, passing in
three literal values as parameters:

DisplayProjectedValue(10000, 25, 6.0);

Note  You don’t specify the parameter data types when you call a function. Just provide the
parameter values.

46   Microsoft Visual C++/CLI Step by Step

The following example shows how to call a function that takes parameters and returns a value. In
this example, you call the GetInvestmentPeriod function to get a value between 5 and 25. You assign
the return value to a local int variable named period:

int period = GetInvestmentPeriod(5, 25);

Calling functions in the sample application
In this exercise, you will extend your sample application to include the function calls you’ve just seen.

1.	 Continue working with the project from the previous exercise.

2.	 Locate the main function and then replace the line that prints “Hello, world” with the follow-
ing statement, which calls the DisplayWelcome function:

 DisplayWelcome();

3.	 Add the following statements to display an illustration of investment growth.

 Console::WriteLine("\nIllustration...");
 DisplayProjectedValue(10000, 25, 6.0);

The DisplayProjectedValue function call displays the value of 10,000 after 25 years at a growth
rate of 6 percent.

4.	 Next add the following statements to ask the user how much he wants to invest and for how
long.

 Console::WriteLine("\nEnter details for your investment:");
 double sum = GetInvestmentAmount();
 int period = GetInvestmentPeriod(5, 25);

The GetInvestmentAmount and GetInvestmentPeriod function calls return these values.

Note  The GetInvestmentPeriod function has default values for each of its param-
eters. (The first parameter has a default value of 10, and the second parameter has a
default value of 25.) You can use these default values when you call the function. For
example, the following function call uses the default value for the second parameter:

int period = GetInvestmentPeriod(5); // First parameter is 5;
 // second parameter
 // defaults to 25.

If you use a default value for a parameter, you must use the default values for each
subsequent parameter in the parameter list. For example, the following function call
is invalid:

int period = GetInvestmentPeriod(, 20); // Try to use default value
 // for just the first
 // parameter – illegal.

	 Chapter 4  Using functions    47

5.	 Add the following statements to calculate and display the projected final value of this invest-
ment, assuming a growth rate of 6 percent:

 Console::WriteLine("\nYour plan...");
 DisplayProjectedValue(sum, period, 6.0);

6.	 Build your application and fix any compiler errors. On the Debug menu, click Start Without
Debugging to run the application. You should see output similar to the following:

Stepping through the application by using debugger
In this exercise, you will step through the application by using the debugger. Doing so will help you
understand how the flow of control passes from one function to another in your application. This ex-
ercise also illustrates the concept of variable scope. You will see how local variables in a function come
into scope during the function’s execution and disappear from scope at the end of the function.

1.	 Open the project from the previous exercise.

2.	 Locate the main function.

3.	 In the gray border to the left of the code, click next to the DisplayWelcome function call to in-
sert a debug breakpoint. A red dot appears in the border, as shown in the graphic that follows.

Tip  If you add a breakpoint in the wrong place, simply click again on the red dot to
remove it.

48   Microsoft Visual C++/CLI Step by Step

4.	 Start the debugging session by pressing F5.

After the application loads, it executes and stops at the breakpoint in the main function.

A yellow arrow appears in the margin next to the DisplayWelcome function call. The yellow
arrow indicates that this is the next statement to be executed.

5.	 Press F11 to step into the DisplayWelcome function.

The debugger calls the DisplayWelcome function and displays a yellow arrow at the start of
that function.

	 Chapter 4  Using functions    49

Note  You can also use the Debug toolbar to control the debugger. To display the
Debug toolbar, on the View menu, point to Toolbars and then click Debug from the
list of toolbars that appears. Each of the debug function keys mentioned in the re-
mainder of this exercise has an equivalent Debug toolbar button.

6.	 Press F10 several times to step over each statement one at a time in the DisplayWelcome
function.

This causes a welcome message to be displayed in the console window. At the end of the
function, the debugger returns you to the main function. The yellow arrow indicates the next
statement to execute in main.

50   Microsoft Visual C++/CLI Step by Step

7.	 Press F10 to step over the Console::WriteLine function.

The debugger executes the Console::WriteLine function but doesn’t take you through it step
by step. The yellow arrow moves on to the DisplayProjectedValue function call in main.

8.	 Press F11 to step into the DisplayProjectedValue function. On the Debug menu, point to
Windows, and then click Locals.

The local variables in this function appear.

The Locals window displays five local variables. The first three variables—amount, years, and
rate—are the function parameters. These variables are already initialized with the values you
passed into the function.

The last two variables—finalAmount and rateFraction—do not have meaningful values be-
cause the variables haven’t been assigned a value yet. In fact, the debugger is a little mislead-
ing here because the finalAmount and rateFraction variables haven’t even been declared yet.
These variables don’t really exist until the variable declaration statements further on in the
function.

9.	 Press F10 several times to step over the statements in the DisplayProjectedValue function.
Observe how the finalAmount and rateFraction variables change during the function. (The
debugger displays values that were changed during the execution of the previous statement
in red for prominence.) Take a look at the console window to see what is displayed.

10.	 Keep pressing F10 until you reach the end of the DisplayProjectedValue function and return to
main.

	 Chapter 4  Using functions    51

11.	 In main, press F10 to step over the Console::WriteLine statement.

12.	 Press F11 to step into the GetInvestmentAmount function. Step through the statements in this
function. When the debugger executes the ReadLine statement, the console window appears
and you are asked to enter a number. Type a number such as 20 and then press Enter.

13.	 Keep stepping through the GetInvestmentAmount function until you return to main.

14.	 Press F10 one more time and then examine the local variables in main. Notice that the return
value from GetInvestmentAmount has been assigned to the sum local variable in main.

15.	 Continue stepping through the application in this manner until the application terminates.

Tip  If the debugger takes you into a function that you’re not interested in stepping
through, press Shift+F11 to step out of the function. If you just want to run the application
without stopping at all, press F5.

Understanding local and global scope
The previous exercise demonstrated how each function defines its own scope for local variables. The
local variables are created during function execution and are automatically destroyed at the end of
the function, which means you can quite happily have variables with the same name in different func-
tions without interference.

52   Microsoft Visual C++/CLI Step by Step

It’s also possible to declare variables globally, outside of any function. Global variables are visible
in all function bodies that come after the global variable definition in your source file. You can use
global variables as a rudimentary way of sharing information between multiple functions.

Important  Global variables are generally considered bad programming practice, espe-
cially in object-oriented languages such as C++. Global variables have too much visibility.
Because global variables can often be used in several functions, if one becomes corrupt,
it can be difficult to pinpoint where the problem occurred. Global variables also introduce
too much dependency between functions.

For these reasons, you should use global variables sparingly. A better way of sharing infor-
mation between functions is to pass parameters and return values, as you saw earlier in this
chapter.

In this exercise, you will define a global variable in your application. You will use this global variable
in several functions to illustrate its global scope.

1.	 Continue working with the project from the previous exercise.

2.	 Before the start of the main function, define a global integer variable named numberOf
YourFunctionsCalled, as follows:

int numberOfYourFunctionsCalled = 0;

3.	 Find the DisplayWelcome function in your code. At the start of this function, increment the
numberOfYourFunctionsCalled variable, as shown in the following.

	 Chapter 4  Using functions    53

Note  You can click the minus sign (–) symbol to the left of the code to collapse a
block of code. To view a collapsed block, click the plus sign (+) to expand it again.
This can make it easier to work with code by hiding functions that are not of interest
at the moment. In the preceding screen shot, the main function has been collapsed.

4.	 Add a similar statement to the start of every function in your application.

5.	 Modify the main function. At the end of this function, just before the return statement, display
the value of the numberOfYourFunctionsCalled variable.

6.	 Build and run your application. How many of your functions are called during the application?

Overloading functions
With C++/CLI, you can provide many functions with the same name, as long as each function has a
different parameter list. This process is known as function overloading. Function overloading is use-
ful if you have several different ways of performing a particular operation based on different input
parameters.

For example, you might want to provide an Average function to find the average value of two
double values, and you might have another Average function to find the average value of an array of
integers. You can define two functions to support these requirements. Give each function the same
name, Average, to emphasize the common purpose of these functions. Define different parameter
lists for the functions to differentiate one from another.

double Average(double number1, double number2);
double Average(int array[], int arraySize);

54   Microsoft Visual C++/CLI Step by Step

You must still implement both of these functions—there is no magic here! When you call the
Average function, the compiler deduces which version of the function to call based on the parameter
values you supply.

Note  If you define overloaded functions, the functions must have different parameter lists.
If you define overloaded functions that differ only in their return type, you’ll get a compiler
error.

In this exercise, you will define an overloaded version of the DisplayProjectedValue function. The
new version calculates a random growth rate between 0 and 20 percent rather than use a specific
growth rate.

1.	 Continue working with the project from the previous exercise.

2.	 Add the following function prototype at the start of your code, below the existing prototype
for DisplayProjectedValue:

void DisplayProjectedValue(double amount, int years);

3.	 In the main function, locate the second call to the DisplayProjectedValue function. Modify the
function call so that you pass only two parameters into the function.

DisplayProjectedValue(sum, period);

4.	 Define the new DisplayProjectedValue function body as follows, placing it after the existing
DisplayProjectedValue function:

void DisplayProjectedValue(double amount, int years)
{
 numberOfYourFunctionsCalled++;

 Random r;
 int randomRate = r.Next(0, 20);
 DisplayProjectedValue(amount, years, randomRate);
}

Tip  You now have two overloaded DisplayProjectedValue functions. It is good prac-
tice to keep overloaded functions together in the source code.

This function uses the Random class to calculate a random number between 0 and 20. The
function passes the random number into the original version of the DisplayProjectedValue
function to calculate the value of the investment using this random rate.

	 Chapter 4  Using functions    55

5.	 Define breakpoints at the start of both of the DisplayProjectedValue functions.

6.	 Build the application and start it in the debugger.

7.	 Observe which versions of DisplayProjectedValue are called as your application executes. See
what random number the application uses for your growth rate.

8.	 Run the application several times to verify that the growth rate really is random.

Quick reference

To Do this

Declare a function prototype. Specify the return type of the function, followed by the
function name, followed by the parameter list enclosed in
parentheses. Remember to include the semicolon at the
end of the function prototype. For example:

double MyFunction(int p1, short p2);

Define default parameters. Define default parameters in the function prototype,
if required. Use an = operator, followed by the default
value. For example:

double MyFunction(int p1, short p2=100);

Define a function body. Specify the return type of the function, followed by the
function name, followed by the parameter list enclosed
in parentheses. Do not specify default parameters here.
Define the function body within braces. For example:

double MyFunction(int p1, short p2)
{
 int n = p1 + p2;
 ...
}

Return a value from a function. Use the return keyword, followed by the value that you
want to return. For example:

return (p1 + p2) / 2.00;

Call a function. Specify the function name and pass parameter values
within parentheses. If the function returns a value, you
can assign it to a variable. For example:

double result = MyFunction(100, 175);

Define and use global variables. Define the global variable outside of any function. Use
the variable in any subsequent function in the source file.
For example:

int myGlobal = 0;

void MyFunction()
{
 myGlobal++;
 ...
}

56   Microsoft Visual C++/CLI Step by Step

To Do this

Define and use overloaded functions. Define several functions with the same name but different
parameter lists. Implement each function. Call the ver-
sion you want, using appropriate parameter values. For
example:

// Prototypes
void MyFunction(int p1);
void MyFunction(double p1, double p2);
...
// Function calls
MyFunction(100);
MyFunction(2.5, 7.5);
...
// Function bodies
void MyFunction(int p1)
{
 ...
}
void MyFunction(double p1, double p2)
{
 ...
}

		 57

C H A P T E R 5

Decision and loop statements

After completing this chapter, you will be able to:

■■ Make decisions by using the if statement.

■■ Make multiway decisions by using the switch statement.

■■ Perform loops by using the while, for, and do-while statements.

■■ Perform unconditional jumps in a loop by using the break and continue statements.

All high-level languages provide keywords with which you can make decisions and perform loops.
C++ is no exception. C++ provides the if statement and the switch statement for making deci-

sions, and it provides the while, for, and do-while statements for performing loops. In addition, C++
provides the break statement to exit a loop immediately and the continue statement to return to the
start of the loop for the next iteration.

In this chapter, you will see how to use these statements to control the flow of execution through a
C++/CLI application.

Making decisions by using the if statement

The most common way to make a decision in C++/CLI is to use the if statement. You can use the if
statement to perform a one-way test, a two-way test, a multiway test, or a nested test. Let’s consider
a simple one-way test first.

Performing one-way tests
The following example shows how to define a one-way test in C++/CLI:

if (number < 0)
 Console::WriteLine("The number is negative");
Console::WriteLine("The end");

The if keyword is followed by a conditional expression, which must be enclosed in parentheses. If
the conditional expression evaluates to true, the next statement is executed, which in this example
will display the message “The number is negative”. Notice that the message “The end” will always be
displayed, regardless of the outcome of the test, because it is outside the body of the if statement.

58   Microsoft Visual C++/CLI Step by Step

Note  There is no semicolon after the closing parenthesis in the if test. It is a common C++
programming error to put one in by mistake, as shown here:

if (number < 0); // Note the spurious semicolon

This statement is equivalent to the following statement, which is probably not what you
intended:

if (number < 0)
 ; // Null if-body – do nothing if number < 0

If you want to include more than one statement in the if body, enclose the if body in braces
({}), as follows:

if (number < 0)
{
 Console::Write("The number ");
 Console::Write(number);
 Console::WriteLine(" is negative");
}
Console::WriteLine("The end");

Many developers reckon that it is good practice to enclose the if body in braces, even if it
only consists of a single statement. This means that the code will still be correct if you (or
another developer) add more statements to the if body in the future.

In this exercise, you will create a new application to perform one-way tests. As this chapter pro-
gresses, you will extend the application to use more complex decision-making constructs and to
perform loops. For now, the application asks the user to enter a date and then it performs simple
validation and displays the date in a user-friendly format on the console.

1.	 Start Visual Studio 2012 and create a new CLR Console Application project. Name the applica-
tion CalendarAssistant.

2.	 At the top of the source code file, immediately below the using namespace System; line, add
the following function prototypes (you will implement all these functions during this chapter):

int GetYear();
int GetMonth();
int GetDay(int year, int month);
void DisplayDate(int year, int month, int day);

3.	 At the end of the file, after the end of the main function, implement the GetYear function as
follows:

int GetYear()
{
 Console::Write("Year? ");
 String ^input = Console::ReadLine();
 int year = Convert::ToInt32(input);
 return year;
}

	 Chapter 5  Decision and loop statements    59

4.	 Implement the GetMonth function as follows:

int GetMonth()
{
 Console::Write("Month? ");
 String ^input = Console::ReadLine();
 int month = Convert::ToInt32(input);
 return month;
}

This is a simplified implementation; later in this chapter, you will enhance the function to en-
sure that the user enters a valid month.

5.	 Implement the GetDay function as follows:

int GetDay(int year, int month)
{
 Console::Write("Day? ");
 String ^input = Console::ReadLine();
 int day = Convert::ToInt32(input);
 return day;
}

Later, you will enhance this function to ensure that the user enters a valid day for the given
year and month.

6.	 Implement the DisplayDate function as shown in the following code to display the date as
three numbers:

void DisplayDate(int year, int month, int day)
{
 Console::WriteLine("\nThis is the date you entered:");
 Console::Write(year);
 Console::Write("-");
 Console::Write(month);
 Console::Write("-");
 Console::Write(day);
 Console::WriteLine();
}

Later in this chapter you will enhance this function to display the date in a more user-friendly
format.

7.	 Add the following code inside the main method, immediately before the return 0; Line:

Console::WriteLine("Welcome to your calendar assistant");
Console::WriteLine("\nPlease enter a date");
int year = GetYear();
int month = GetMonth();
int day = GetDay(year, month);

60   Microsoft Visual C++/CLI Step by Step

// Simplified test for now – assume there are 31 days in
// every month :-)
if (month >= 1 && month <= 12 && day >= 1 && day <= 31)
{
 DisplayDate(year, month, day);
}
Console::WriteLine("\nThe end\n");

This code asks the user to enter a year, month, and day. If the date passes a simplified valida-
tion test, the date is displayed on the console. If the date is invalid, it is not displayed at all.

Note  This if statement combines several tests by using the logical AND operator &&.
As you learned in Chapter 3, “Variables and operators,” logical tests are performed
from left to right. Testing stops as soon as the final outcome has been established.
For example, if the month is 0, there is no point performing the other tests—the
date is definitely invalid. This is known as short-circuit evaluation.

8.	 Build the application and fix any compiler errors that you might have.

9.	 Run the application. Type in valid numbers for the year, month, and day (for example, 2012, 7,
and 22).

The application displays the messages shown in the following screen shot:

Observe that the application displays the date because it is valid. The message “The End” also
appears at the end of the program.

10.	 Run the application again, but this time, type an invalid date (for example, 2012, 2, and 33).
The application displays the messages shown in the following screen shot:

	 Chapter 5  Decision and loop statements    61

Notice that because the date you typed was invalid, the application doesn’t display it. Instead,
it just displays “The End.” You can make the application more user-friendly by displaying an
error message if the date is invalid. To do so, you need to use a two-way test.

Performing two-way tests
The following code shows how to define a two-way test for the Calendar Assistant application:

if (month >= 1 && month <= 12 && day >= 1 && day <= 31)
{
 DisplayDate(year, month, day);
}
else
{
 Console::WriteLine("Invalid date");
}
Console::WriteLine("\nThe end\n");

The else body defines what action to perform if the test condition fails.

In this exercise, you will enhance your Calendar Assistant application to display an error message if
an invalid date is entered.

1.	 Continue working with the project from the previous exercise.

2.	 Modify the main function, replacing the simple if with an if-else statement to test for valid or
invalid dates.

if (month >= 1 && month <= 12 && day >= 1 && day <= 31)
{
 DisplayDate(year, month, day);
}
else
{
 Console::WriteLine("Invalid date");
}
Console::WriteLine("\nThe end\n");

62   Microsoft Visual C++/CLI Step by Step

3.	 Build and run the application. Type an invalid date such as 2001, 0, and 31.

The application now displays an error message, as demonstrated in the following screen shot:

Performing multiway tests
You can arrange if-else statements in a cascading fashion to perform multiway decision making.

The following code shows how to use a multiway test to determine the maximum number of days
(maxDay) in a month:

int maxDay;
if (month == 4 || month == 6 || month == 9 || month == 11)
{
 maxDay = 30;
}
else if (month == 2)
{
 maxDay = 28;
}
else
{
 maxDay = 31;
}

This code specifies that if the month is April, June, September, or November, set maxDay to 30. If
the month is February, maxDay is set to 28. (We’ll ignore leap years for now!) If the month is anything
else, set maxDay to 31.

Note  There is a space between the keywords else and if because they are distinct key-
words. This is unlike Microsoft Visual Basic .NET, which uses the single keyword ElseIf.

In this exercise, you will enhance your Calendar Assistant application to display the maximum num-
ber of days in the user’s chosen month.

	 Chapter 5  Decision and loop statements    63

1.	 Continue working with the project from the previous exercise.

2.	 Replace the GetDay function with the following code so that it uses an if-else-if statement to
determine the maximum allowable number of days.

int GetDay(int year, int month)
{
 int maxDay;
 if (month == 4 || month == 6 || month == 9 || month == 11)
 {
 maxDay = 30;
 }
 else if (month == 2)
 {
 maxDay = 28;
 }
 else
 {
 maxDay = 31;
 }
 Console::Write("Day [1 to ");
 Console::Write(maxDay);
 Console::Write("]? ");

 String ^input = Console::ReadLine();
 int day = Convert::ToInt32(input);
 return day;
}

3.	 Build and run the application. Type the year 2012 and the month 1.

The application prompts you to enter a day between 1 and 31, as illustrated in the following
screen shot:

4.	 Type a valid day and close the console window when the date is displayed.

64   Microsoft Visual C++/CLI Step by Step

5.	 Run the application again. Type the year 2012 and the month 2.

The application prompts you to enter a day between 1 and 28, as shown here:

6.	 Type a valid day and close the console window when the date is displayed. (Don’t worry about
the date validation in main: You will remove it later and replace it with more comprehensive
validation in the GetMonth and GetDay functions.)

Performing nested tests
It is possible to nest tests within one another. This makes it possible for you to perform more complex
logical operations. The following code shows how to use nested tests to accommodate leap years cor-
rectly in the Calendar Assistant application:

int maxDay;
if (month == 4 || month == 6 || month == 9 || month == 11)
{
 maxDay = 30;
}
else if (month == 2)
{
 bool isLeapYear = (year % 4 == 0 && year % 100 != 0) || (year % 400 == 0);
 if (isLeapYear)
 {
 maxDay = 29;
 }
 else
 {
 maxDay = 28;
 }
}
else
{
 maxDay = 31;
}

If the month is February, you define a bool variable to determine if the year is a leap year. A year
is a leap year if it is evenly divisible by 4 but not evenly divisible by 100 (except years that are evenly
divisible by 400, which are leap years). The following table shows some examples of leap years and
non–leap years.

	 Chapter 5  Decision and loop statements    65

Year Leap year?

1996 Yes

1997 No

1900 No

2000 Yes

You then use a nested if statement to test the bool variable isLeapYear so that you can assign an ap-
propriate value to maxDay.

Note  There is no explicit test in the nested if statement. The condition if (isLeapYear) is
equivalent to if (isLeapYear != false).

In this exercise, you will enhance your Calendar Assistant application to deal correctly with leap
years.

1.	 Continue working with the project from the previous exercise.

2.	 Modify the GetDay function, replacing the if…else if…else statements to match the block of
code just described to test for leap years.

3.	 Build and run the application. Type the year 1996 and the month 2. The application prompts
you to enter a day between 1 and 29. Type a valid day and then when the date is displayed,
close the console window.

4.	 Run the application again. Type the year 1997 and the month 2. Verify that the application
prompts you to enter a day between 1 and 28.

5.	 Run the application several more times using the test data from the previous table.

Making decisions by using the switch Statement

Now that you have seen how the if statement works, let’s take a look at the switch statement. Using
the switch statement, you can test a single variable and execute one of several branches depending
on the variable’s value.

Defining simple switch statements
The example that follows shows the syntax for the switch statement. The switch statement tests the
numberOfSides in a shape and displays a message to describe that shape.

66   Microsoft Visual C++/CLI Step by Step

int numberOfSides; // Number of sides in a shape
...
switch (numberOfSides)
{
 case 3: Console::Write("Triangle"); break;
 case 4: Console::Write("Quadrilateral"); break;
 case 5: Console::Write("Pentagon"); break;
 case 6: Console::Write("Hexagon"); break;
 case 7: Console::Write("Septagon"); break;
 case 8: Console::Write("Octagon"); break;
 case 9: Console::Write("Nonagon"); break;
 case 10: Console::Write("Decagon"); break;
 default: Console::Write("Polygon"); break;
}

The switch keyword is followed by an expression in parentheses. This expression must evaluate to
an integer, a character, or an enumeration value. The body of the switch consists of a series of case
branches, each of which comprises the keyword case, a value, and a colon.

The value identifying a case branch must be a constant of integer type. This means that integer
numbers, enumeration values, and characters are allowed. For example, 5 and a are valid, but abc is
not because it is a string literal.

Note  Each case label specifies a single literal value. You can’t specify multiple values, you
can’t define a range of values, and the values must be known at compile time. This means
that you can’t, for instance, say case foo, where foo is a variable whose value will only be
known when the application executes.

Each case branch can contain any number of statements. At the end of each branch, use a break
statement to exit the switch statement.

Note  There is normally no need to use braces around the code in a case branch. The break
statement marks the end of each case branch. However, you do need to use braces if you
need to declare a variable within the branch code.

You can define an optional default branch in the switch statement. The default branch will be ex-
ecuted if the expression doesn’t match any of the case labels.

Tip  It’s good practice to define a default branch even if you don’t have any specific pro-
cessing to perform. Including the default branch shows that you haven’t just forgotten it.
Also, the default branch can help you trap unexpected values and display a suitable warn-
ing to the user.

In this exercise, you will enhance your Calendar Assistant application to display the month as a
string such as January or February.

	 Chapter 5  Decision and loop statements    67

1.	 Continue working with the project from the previous exercise.

2.	 Modify the DisplayDate function. Rather than display the month as an integer, replace the
Console::Write(month) statement with a switch statement that displays the month as a string.

switch (month)
{
 case 1: Console::Write("January"); break;
 case 2: Console::Write("February"); break;
 case 3: Console::Write("March"); break;
 case 4: Console::Write("April"); break;
 case 5: Console::Write("May"); break;
 case 6: Console::Write("June"); break;
 case 7: Console::Write("July"); break;
 case 8: Console::Write("August"); break;
 case 9: Console::Write("September"); break;
 case 10: Console::Write("October"); break;
 case 11: Console::Write("November"); break;
 case 12: Console::Write("December"); break;
 default: Console::Write("Unknown"); break;
}

3.	 Build the application.

4.	 Run the application several times, typing a different month each time. Verify that the applica-
tion displays the correct month name each time.

Using fall-through in a switch statement
If you omit the break statement at the end of a case branch, flow of control continues on to the next
statement. This process is called fall-through. This can be useful to avoid duplication of code, but be
careful not to do it accidentally.

The following example illustrates why fall-through might be useful. This example tests a lowercase
letter to see if it is a vowel or a consonant:

char lowercaseLetter; // Single lowercase letter, for example 'a'
...
switch (lowercaseLetter)
{
 case 'a':
 case 'e':
 case 'i':
 case 'o':
 case 'u': Console::Write("Vowel"); break;

 default: Console::Write("Consonant"); break;
}

There is no break statement in the first four case labels. As a result, the flow of control passes on
to the next executable statement to display the message Vowel. The default branch deals with all the
other letters and displays the message Consonant.

68   Microsoft Visual C++/CLI Step by Step

In this exercise, you will enhance your Calendar Assistant application to display the season for the
user’s date.

1.	 Continue working with the project from the previous exercise.

2.	 Modify the DisplayDate function. After displaying the year, month, and day, add the following
code after the line Console::Write(day) to display the season:

switch (month)
{
 case 12:
 case 1:
 case 2: Console::WriteLine(" [Winter]"); break;

 case 3:
 case 4:
 case 5: Console::WriteLine(" [Spring]"); break;

 case 6:
 case 7:
 case 8: Console::WriteLine(" [Summer]"); break;

 case 9:
 case 10:
 case 11: Console::WriteLine(" [Fall]"); break;
}

3.	 Build the application.

4.	 Run the application several times, typing a different month each time. Verify that the applica-
tion displays the correct season name each time.

Performing loops

For the rest of this chapter, you’ll see how to perform loops in C++/CLI. You’ll also see how to perform
unconditional jumps in a loop by using the break and continue statements.

C++ has three main loop constructs: the while loop, the for loop, and the do-while loop.

Note  There is actually a fourth loop type, the for-each loop, but I’ll leave discussing that
until we get to arrays.

Let’s look at the while loop first.

Using while loops
A while loop continues executing its body for as long as the condition in parentheses evaluates to
true. The following example shows how to write a simple while loop in C++/CLI:

	 Chapter 5  Decision and loop statements    69

int count = 1;
while (count <= 5)
{
 Console::WriteLine(count * count);
 count++;
}
Console::WriteLine("The end");

You must follow the while keyword with a conditional expression enclosed in parentheses. As long
as the conditional expression evaluates to true, the while body executes. After the loop body has been
executed, control returns to the while statement and the conditional expression is tested again. This
sequence continues until the test evaluates to false.

You must, of course, remember to include some kind of update statement in the loop so that it will
terminate eventually. In this example count++ is incrementing the loop counter. If you don’t provide
an update statement, the loop will iterate forever, which probably isn’t what you want.

The preceding example displays the following output:

In this exercise, you will enhance your Calendar Assistant application so that the user can type five
dates.

1.	 Continue working with the project from the previous exercise.

2.	 Modify the code in the main function by replacing the entire body of the function with the
following code:

Console::WriteLine("Welcome to your calendar assistant");

int count = 1; // Declare and initialize the loop counter
while (count <= 5) // Test the loop counter
{
 Console::Write("\nPlease enter a date ");
 Console::WriteLine(count);

 int year = GetYear();
 int month = GetMonth();
 int day = GetDay(year, month);
 DisplayDate(year, month, day);

 count++; // Increment the loop counter
}

70   Microsoft Visual C++/CLI Step by Step

3.	 Build and run the application. The application prompts you to enter the first date. After you
have typed this date, the application prompts you to enter the second date. This process con-
tinues until you have typed five dates, at which point the application closes, as depicted in the
following screen shot:

Using for loops
The for loop is an alternative to the while loop. It provides more control over the way in which the
loop executes.

The following example shows how to write a simple for loop in C++/CLI. This example has exactly
the same effect as the while loop.

for (int count = 1; count <= 5; count++)
{
 Console::WriteLine(count * count);
}

Console::WriteLine("The end");

The parentheses after the for keyword contain three expressions separated by semicolons. The first
expression performs loop initialization, such as initializing the loop counter. This initialization expres-
sion is executed once only, at the start of the loop.

Note  You can declare loop variables in the first expression of the for statement. The pre-
ceding example illustrates this technique. The count variable is local to the for statement
and goes out of scope when the loop terminates.

The second expression statement defines a test. If the test evaluates to true, the loop body is
executed, but if it is false, the loop finishes and control passes to the statement that follows the clos-
ing parenthesis. After the loop body has been executed, the final expression in the for statement is
executed; this expression performs loop update operations, such as incrementing the loop counter.

	 Chapter 5  Decision and loop statements    71

Note  The for statement is very flexible. You can omit any of the three expressions in the
for construct as long as you retain the semicolon separators. You can even omit all three
expressions, as in for(; ;), which represents an infinite loop

The preceding example displays the output shown in the following screen shot.

In this exercise, you will modify your Calendar Assistant application so that it uses a for loop rather
than a while loop to obtain five dates from the user.

1.	 Continue working with the project from the previous exercise.

2.	 Modify the code in the main function to use a for loop rather than a while loop, as shown
here:

Console::WriteLine("Welcome to your calendar assistant");

for (int count = 1; count <= 5; count++)
{
 Console::Write("\nPlease enter date ");
 Console::WriteLine(count);

 int year = GetYear();
 int month = GetMonth();
 int day = GetDay(year, month);
 DisplayDate(year, month, day);
}

Notice that there is no count++ statement after displaying the date. This is because the for
statement takes care of incrementing the loop counter.

3.	 Build and run the application. The application asks you to enter five dates, as before.

Using do-while loops
The third loop construct you’ll look at here is the do-while loop (remember, there’s still the for-each
loop, which you will meet later). The do-while loop is fundamentally different from the while and for
loops because the test comes at the end of the loop body, which means that the loop body is always
executed at least once.

72   Microsoft Visual C++/CLI Step by Step

The following example shows how to write a simple do-while loop in C++/CLI. This example gener-
ates random numbers between 1 and 6, inclusive, to simulate a die. It then counts how many throws
are needed to get a 6.

Random ^r = gcnew Random();
int randomNumber;
int throws = 0;
do
{
 randomNumber = r->Next(1, 7);
 Console::WriteLine(randomNumber);
 throws++;
}
while (randomNumber != 6);

Console::Write("You took ");
Console::Write(throws);
Console::WriteLine(" tries to get a 6");

The loop starts with the do keyword, followed by the loop body, followed by the while keyword
and the test condition. A semicolon is required after the closing parenthesis of the test condition.

The preceding example displays the output shown in the following screen shot:

In this exercise, you will modify your Calendar Assistant application so that it performs input vali-
dation, which is a typical use of the do-while loop.

1.	 Continue working with the project from the previous exercise.

2.	 Modify the GetMonth function as follows, which forces the user to type a valid month:

int GetMonth()
{
 int month = 0;
 do
 {
 Console::Write("Month [1 to 12]? ");
 String ^input = Console::ReadLine();
 month = Convert::ToInt32(input);
 }

	 Chapter 5  Decision and loop statements    73

 while (month < 1 || month > 12);
 return month;
}

3.	 Modify the GetDay function as follows, which forces the user to type a valid day:

int GetDay(int year, int month)
{
 int day = 0;
 int maxDay;

 // Calculate maxDay, as before (code not shown here) … … …

 do
 {
 Console::Write("Day [1 to ");
 Console::Write(maxDay);
 Console::Write("]? ");
 String ^input = Console::ReadLine();
 day = Convert::ToInt32(input);
 }
 while (day < 1 || day > maxDay);
 return day;
}

4.	 Build and run the application.

5.	 Try to type an invalid month. The application keeps asking you to enter another month until
you type a value between 1 and 12, inclusive.

6.	 Try to type an invalid day. The application keeps asking you to enter another day until you
type a valid number (which depends on your chosen year and month).

Performing unconditional jumps
C++/CLI provides two keywords—break and continue—with which you can jump unconditionally
within a loop. The break statement causes you to exit the loop immediately. The continue statement
abandons the current iteration and goes back to the top of the loop ready for the next iteration.

Note  The break and continue statements can make it difficult to understand the logical
flow through a loop. Use break and continue sparingly to avoid complicating your code
unnecessarily.

In this exercise, you will modify the main loop in your Calendar Assistant application. You will give
the user the chance to break from the loop prematurely, skip the current date and continue on to the
next one, or display the current date as normal.

1.	 Continue working with the project from the previous exercise.

74   Microsoft Visual C++/CLI Step by Step

2.	 Modify the main function as follows, which gives the user the option to break or continue if
desired:

Console::WriteLine("Welcome to your calendar assistant");
for (int count = 1; count <= 5; count++)
{
 Console::Write("\nPlease enter date ");
 Console::WriteLine(count);
 int year = GetYear();
 int month = GetMonth();
 int day = GetDay(year, month);

 Console::Write("Press B (break), C (continue), or ");
 Console::Write("anything else to display date ");
 String ^input = Console::ReadLine();
 if (input->Equals("B"))
 {
 break;
 }
 else if (input->Equals("C"))
 {
 continue;
 }
 DisplayDate(year, month, day);
}

Note  The Equals method is used here to check that two strings contain the same
content. You will see another (and more idiomatic) way to do this using the ==
operator when we discuss operator overloading.

3.	 Build and run the application.

4.	 After you type the first date, you are asked whether you want to break or continue. Press X (or
any other key except B or C) and then press Enter to display the date as normal.

5.	 Type the second date, and then press C followed by Enter, which causes the continue state-
ment to be executed.

The continue statement abandons the current iteration without displaying your date. Instead,
you are asked to type the third date.

6.	 Type the third date and then press B, which causes the break statement to be executed. The
break statement terminates the entire loop.

	 Chapter 5  Decision and loop statements    75

Quick reference

To Do this

Perform a one-way test. Use the if keyword followed by a test enclosed in paren-
theses. You must enclose the if body in braces if it con-
tains more than one statement. For example:

if (n < 0)
{
 Console::Write("The number ");
 Console::Write(n);
 Console::WriteLine(" is negative");
}

Perform a two-way test. Use an if-else construct. For example:

if (n < 0)
{
 Console::Write("Negative");
}
else
{
 Console::Write("Not negative");
}

Perform a multiway test. Use an if-else-if construct. For example:

if (n < 0)
{
 Console::Write("Negative");
}
else if (n == 0)
{
 Console::Write("Zero");
}
else
{
 Console::Write("Positive");
}

Test a single expression against a finite set of constant
values.

Use the switch keyword followed by an integral expres-
sion enclosed in parentheses. Define case branches for
each value you want to test against, and define a default
branch for all other values. Use the break statement to
close a branch. For example:

int dayNumber; // 0=Sun, 1=Mon, etc.
…
switch (dayNumber)
{
case 0:
case 6:
 Console::Write("Weekend");
 break;
default:
 Console::Write("Weekday");
 break;
}

Perform iteration by using the while loop. Use the while keyword followed by a test enclosed in
parentheses. For example:

int n = 10;
while (n >= 0)
{
 Console::WriteLine(n);
 n--;
}

76   Microsoft Visual C++/CLI Step by Step

To Do this

Perform iteration by using the for loop. Use the for keyword followed by a pair of parentheses.
Within the parentheses, define an initialization expres-
sion, followed by a test expression, followed by an update
expression. Use semicolons to separate these expressions.
For example:

for (int n = 10; n >= 0; n--)
{
 Console::WriteLine(n);
}

Perform iteration by using the do-while loop. Use the do keyword, followed by the loop body, followed
by the while keyword and the test condition. Terminate
the loop with a semicolon. For example:

int n;
do
{
 String^ input = Console::ReadLine();
 n = Convert::ToInt32(input);
} while (n > 100);

Terminate a loop prematurely. Use the break statement inside any loop. For example:

for (int n = 0; n < 1000; n++)
{
 int square = n * n;
 if (square > 3500)
 {
 break;
 }
 Console::WriteLine(square);
}

Abandon a loop iteration and continue with the next
iteration.

Use the continue statement inside any loop. For example:

for (int n = 0; n < 1000; n++)
{
 int square = n * n;
 if (square % 2 == 0)
 {
 continue;
 }
 Console::WriteLine(square);
}

		 77

C H A P T E R 6

More about classes and objects

After completing this chapter, you will be able to:

■■ Organize classes into header files and source files.

■■ Create objects.

■■ Define constructors to initialize an object.

■■ Define class-wide members by using the static keyword.

■■ Define relationships between objects in an application.

Chapter 2, “Introducing object-oriented programming,” discusses how C++ is an object-oriented
programming language. Recall from that chapter that you define classes to represent the im-

portant types of entities in your application, and you create objects as instances of these classes. For
example, a Human Resources application might define classes such as Employee and Contract. When
the application is running, it might create a new Employee object every time a new employee joins the
company and a new Contract object to describe the employee’s terms of employment.

This chapter builds on the introduction to classes and objects in Chapter 2. In this chapter, you’ll
see how to organize classes into header files and source files, which makes it possible for you to keep
a clean separation between a class definition and its implementation. You’ll also learn how to provide
constructors to initialize new objects when they’re created.

Most of the data members and member functions in a class are instance members because they
belong to specific instances of the class. It’s also possible to define class members, which belong
to the class as a whole. You’ll see how to define class members in this chapter by using the static
keyword.

Finally, you’ll see how to create object relationships in C++. This concept is important in object-
oriented programming because it facilitates objects communicating with one another in a running
application.

78   Microsoft Visual C++/CLI Step by Step

Organizing classes into header files and source files

Chapter 2 shows you how to define a simple class and implement all its member functions inline. Let’s
refresh your memory by considering the following class, which represents a credit card account:

ref class CreditCardAccount
{
public:
 void PrintStatement()
 {
 Console::Write("Credit card balance: ");
 Console::WriteLine(currentBalance);
 }
private:
 double currentBalance;
};

The CreditCardAccount class contains a single member function named PrintStatement. This func-
tion has been declared public, so it can be accessed by other parts of the application. The class also
contains a single data member named currentBalance, which has been declared private to preserve
encapsulation.

Notice that the class definition contains the full body of the PrintStatement function not just its
prototype. This is known as an inline function. Inline functions are fine for small functions but can
carry an overhead if used too much, and they can also make the class definition hard to understand.
Imagine a class containing 100 functions, all of which are declared inline. The class definition would
be very long, and it might be difficult to understand the structure of the code. A common solution
in C++ is to divide the class definition into two parts: a header file and a source file, as shown in the
following figure.

	 Chapter 6  More about classes and objects    79

Note  You can use any file names you like for the header file and source file. Most develop-
ers use the same name as the class, with the standard file extensions .h (for the header file)
and .cpp (for the source file.)

The header file, CreditCardAccount.h, contains the class declaration. Notice that the class declara-
tion now contains function prototypes rather than function bodies. These prototypes make the header
file easier to read because the function signatures are more prominent.

The source file, CreditCardAccount.cpp, contains the class definition, which consists of all the func-
tion bodies for the class. Each function must be prefixed by the name of the class to which it belongs,
followed by two colons, as follows:

void CreditCardAccount::PrintStatement()
{
 ... function body ...
}

The double-colon syntax (::) is the C++ scope resolution operator. In this example, the scope resolu-
tion operator tells us that the PrintStatement function belongs to the CreditCardAccount class.

The reason for this should be clear: How is the compiler to know that this is the PrintStatement
function that is part of CreditCardAccount as opposed to some other PrintStatement function?

Note  You must provide an #include statement at the start of the source file to include the
header file for the class. For example, CreditCardAccount.cpp has an #include statement
to include CreditCardAccount.h. The compiler needs the information in this header file to
compile the function bodies in the source file, for example, to check that the spelling and
number of arguments in PrintStatement matches the declaration.

Declaring a class in a header file
In this exercise, you will create a new application and define a CreditCardAccount class in a header
file. (You will implement the class in the exercise that follows.)

1.	 Start Visual Studio 2012 and create a new CLR Console Application project named
CreditOrganizer.

2.	 On the Project menu, click Add New Item.

3.	 In the Add New Item dialog box, in the pane on the left, select Visual C++ and then, in the
center pane, click Header File (.h).

4.	 Toward the bottom of the dialog box, in the Name box, type CreditCardAccount.h, and then
click Add.

Visual Studio creates an empty header file.

80   Microsoft Visual C++/CLI Step by Step

5.	 Type the following code in the header file to define the CreditCardAccount class:

ref class CreditCardAccount
{
public:
 void SetCreditLimit(double amount);
 bool MakePurchase(double amount);
 void MakeRepayment(double amount);
 void PrintStatement();
 long GetAccountNumber();

private:
 long accountNumber;
 double currentBalance;
 double creditLimit;
};

Every credit card account has a unique account number, a current balance, and a credit limit.
The SetCreditLimit member function will be used to initialize the credit limit for the account.
You can use the MakePurchase member function to make a purchase on the credit card. This
function returns true if the purchase is allowed, or false if the purchase would cause the credit
limit to be exceeded. The MakeRepayment member function repays some or all of the out-
standing balance. The PrintStatement member function displays a statement for the account.
And finally, the GetAccountNumber member function returns the number for the account.

6.	 Build the application and fix any compiler errors.

	 Chapter 6  More about classes and objects    81

Implementing a class in a source file
In this exercise, you will implement the CreditCardAccount class in a source file.

1.	 Continue using the project from the previous exercise.

2.	 On the Project menu, click Add New Item.

3.	 In the Add New Item dialog box, in the pane on the left, select Visual C++ and then, in the
center pane, click C++ File (.cpp).

4.	 Toward the bottom of the dialog box, in the Name box, type CreditCardAccount.cpp, and
then click Add.

Visual Studio creates an empty source file.

5.	 Add two #include statements at the beginning of the file, as follows:

#include "stdafx.h"
#include "CreditCardAccount.h"

The file stdafx.h is a header file that can include other standard header files; you include
stdafx.h at the start of every source file in your project.

CreditCardAccount.h contains the class definition for CreditCardAccount. You include this
header file here so that the compiler can check your implementation of the CreditCardAccount
class.

6.	 Add the following code so that you can use classes and data types defined in the System
namespace:

#using <mscorlib.dll>
using namespace System;

The #using <mscorlib.dll> preprocessor directive imports the Microsoft Intermediate Lan-
guage (MSIL) file mscorlib.dll so that you can use managed data and managed constructs
defined in this library file.

The using namespace System statement helps you to use classes and data types defined in
the System namespace. Specifically, you will use the Console class to display messages on the
console.

7.	 Implement the CreditCardAccount::SetCreditLimit member function, as shown here:

void CreditCardAccount::SetCreditLimit(double amount)
{
 creditLimit = amount;
}

82   Microsoft Visual C++/CLI Step by Step

8.	 Implement the CreditCardAccount::MakePurchase member function as follows:

bool CreditCardAccount::MakePurchase(double amount)
{
 if (currentBalance + amount > creditLimit)
 {
 return false;
 }
 else
 {
 currentBalance += amount;
 return true;
 }
}

This function is called when the card owner attempts to make a purchase by using the credit
card. The amount parameter indicates the amount of the purchase. The function tests whether
the purchase would exceed the creditLimit data member, returning false if it would. Otherwise,
the function adds the amount to the currentBalance data member and returns true.

Note  Member functions have unrestricted access to all the members in the class,
including private members.

9.	 Implement the CreditCardAccount::MakeRepayment member function as follows:

void CreditCardAccount::MakeRepayment(double amount)
{
 currentBalance -= amount;
}

This function gives the user the opportunity to pay off some or all of the outstanding balance.

10.	 Implement the CreditCardAccount::PrintStatement member function as follows:

void CreditCardAccount::PrintStatement()
{
 Console::Write("Current balance: ");
 Console::WriteLine(currentBalance);
}

This function displays information about the current state of the account.

11.	 Implement the GetAccountNumber member function as follows:

long CreditCardAccount::GetAccountNumber()
{
 return accountNumber;
}

12.	 Build the application and fix any compiler errors.

	 Chapter 6  More about classes and objects    83

Creating objects

After you have defined and implemented a class, you are ready to begin creating objects.

The following code shows how to create an object and call its public member functions:

CreditCardAccount ^myAccount; // Declare a handle
myAccount = gcnew CreditCardAccount; // Create a new
 // CreditCardAccount object
myAccount->MakePurchase(100); // Use the -> operator to invoke
 // member functions
myAccount->MakeRepayment(70);
myAccount->PrintStatement();
...

The gcnew operator creates a new object of the CreditCardAccount class and returns a handle to
this new object. The handle is used with the -> operator to invoke member functions on the new
object.

Note  If you forget to delete an object of a managed class, the garbage collector is respon-
sible for disposing of it. In Chapter 7, “Controlling object lifetimes,” you can see how this
works as well as how you can work with the garbage collector to ensure that your objects
are tidied up correctly at the end of their lives.

In this exercise, you will create a new CreditCardAccount object, invoke its member functions, and
delete the object when it is no longer required.

1.	 Continue using the project from the previous exercise.

2.	 If the file CreditOrganizer.cpp is not visible in the editor window, find the file in the Solution
Explorer, and then double-click the name to display it in the editor.

3.	 Just after the #include “stdafx.h” line, add another #include directive as follows:

#include "CreditCardAccount.h"

This line makes it possible for you to create and use CreditCardAccount objects in this source
file.

Replace the body of the main function with the following code:

CreditCardAccount ^myAccount; // Declare a handle
myAccount = gcnew CreditCardAccount; // Create a new CreditCardAccount object
myAccount->SetCreditLimit(1000);
myAccount->MakePurchase(1000); // Use the -> operator to invoke member functions
myAccount->MakeRepayment(700);
myAccount->PrintStatement();
long num = myAccount->GetAccountNumber();
Console::Write("Account number: ");
Console::WriteLine(num);

84   Microsoft Visual C++/CLI Step by Step

4.	 Build the application and fix any compiler errors.

5.	 Run the application by pressing Ctrl+F5.

The application creates a CreditCardAccount object, makes a purchase and a repayment, and
prints a statement. However, the account number displays as zero, as illustrated in the follow-
ing screen shot:

The reason for this is because the members of the CreditCardAccount object are initialized to zero
when it’s created. However, it doesn’t really make sense to have an account without a number, so we’d
like to ensure that every account is created with an account number.

You do this by defining a constructor in the CreditCardAccount class. The constructor is a member
function that initializes new objects when they’re created. Chapter 7 shows you how to tidy up objects
just before they are destroyed.

Initializing objects by using constructors

In this section, you will see how to define constructor functions for a class.

Defining constructors
A constructor is a special member function that is called automatically when an object is created. The
purpose of the constructor is to initialize the object to bring it into an operational state. You declare
the prototype for the constructor in the class definition. The following example declares a simple
constructor for the CreditCardAccount class:

ref class CreditCardAccount
{
public:
 CreditCardAccount();
 // ... Other members, as before
};

	 Chapter 6  More about classes and objects    85

There are several important points to notice here. First, a constructor must have the same name as
the class; this is how the compiler recognizes it as a constructor. Also, a constructor cannot specify a
return type—not even void. If you do specify a return type for a constructor, you will get a compiler
error.

You can implement the constructor in the source file as follows:

CreditCardAccount::CreditCardAccount()
{
 accountNumber = 1234;
 currentBalance = 0;
 creditLimit = 3000;
}

Note  Although this example has set all three fields, the compiler will arrange for fields
to be set to a default value. This is zero for numeric types, false for Booleans, and a “null”
value for handles.

This simple constructor initializes every new CreditCardAccount object with the same values. A
more realistic approach is to define a constructor that takes parameters so that each object can be
initialized with different values.

Note  You can provide any number of constructors in a class, as long as each constructor
has a distinct parameter list. This is an example of function overloading.

In this exercise, you will add a constructor to the CreditCardAccount class. The constructor takes
two parameters specifying the account number and credit limit for the new account. The current bal-
ance is always initialized to 0 for each new account, so there is no need to supply a parameter for this
data member.

1.	 Continue using the project from the previous exercise.

2.	 Open CreditCardAccount.h and declare a public constructor as follows:

ref class CreditCardAccount
{
public:
 CreditCardAccount(long number, double limit);
 // ... Other members, as before
};

Tip  Ensure that the constructor is public. If you make it private by mistake, you
won’t be able to create CreditCardAccount objects in your application.

86   Microsoft Visual C++/CLI Step by Step

3.	 Open CreditCardAccount.cpp and implement the constructor as follows:

CreditCardAccount::CreditCardAccount(long number, double limit)
{
 accountNumber = number;
 creditLimit = limit;
 currentBalance = 0.0;
}

4.	 Open CreditOrganizer.cpp and modify the statement that creates the CreditCardAccount
object as follows:

myAccount = gcnew CreditCardAccount(12345, 2500);

This statement creates a new CreditCardAccount object and passes the values 12345 and 2500
into the CreditCardAccount constructor. The constructor uses these parameter values to initial-
ize the accountNumber and creditLimit data members, respectively.

5.	 Build the application, fix any compiler errors, and then run the application.

The application now displays meaningful information for the account number, as demonstrat-
ed in the following screen shot:

Member initialization lists
There’s an alternative syntax for initializing data members in a constructor using a member initializa-
tion list, as follows:

CreditCardAccount::CreditCardAccount(long number, double limit)
 : accountNumber(number), creditLimit (limit), currentBalance(0.0)
{
}

	 Chapter 6  More about classes and objects    87

The colon on the second line is followed by a comma-separated list of data members. For each
data member, an initial value is provided in parentheses. Observe that the body of the constructor is
now empty because we have nothing else to do—this is quite normal.

It is considered better practice to use a member initialization list rather than initializing members
in the constructor body. There are also some situations in which you must use a member initialization
list. You’ll see such an example in Chapter 8, “Inheritance,” when you delve into that subject.

Defining class-wide members

The data members and member functions currently defined in the CreditCardAccount class are in-
stance members. Each CreditCardAccount instance has its own accountNumber, currentBalance, and
creditLimit. Likewise, when you invoke member functions such as MakePurchase, MakeRepayment,
and PrintStatement, you must specify which CreditCardAccount instance you’re using, as shown in the
following figure.

With C++, you can also define class-wide members that logically belong to the entire class rather
than to a specific instance. For example, you can define a class-wide data member named interestRate
that holds the interest rate for all accounts. Similarly, you can provide class-wide member functions
called SetInterestRate and GetInterestRate to work with the interest rate, as shown in the following
figure.

88   Microsoft Visual C++/CLI Step by Step

Let’s see how to define class-wide data members and member functions.

Defining class-wide data members
To define a class-wide data member, use the static keyword, as demonstrated in the following code:

ref class CreditCardAccount
{
private:
 static int numberOfAccounts = 0; // Declare class-wide data member
 // ... Other members, as before
};

This declaration informs the compiler that there is a class-wide data member named numberOf
Accounts and initializes it to zero.

Note  Like any other member of a class, if you do not initialize numberOfAccounts explicitly,
the default initial value will be 0.

In this exercise, you will add a static numberOfAccounts data member to the CreditCardAccount
class. You will increment this data member every time a new CreditCardAccount object is created.

1.	 Continue using the project from the previous exercise.

2.	 Open CreditCardAccount.h and declare the static numberOfAccounts data member as follows:

class CreditCardAccount
{
private:

	 Chapter 6  More about classes and objects    89

 static int numberOfAccounts = 0;
 // ... Other members, as before
};

3.	 Open CreditCardAccount.cpp and modify the CreditCardAccount constructor so that it incre-
ments numberOfAccounts every time a new CreditCardAccount object is created.

CreditCardAccount::CreditCardAccount(long number, double limit)
{
 accountNumber = number;
 creditLimit = limit;
 currentBalance = 0.0;
 numberOfAccounts++;
 Console::Write("This is account number ");
 Console::WriteLine(numberOfAccounts);
}

4.	 Open CreditOrganizer.cpp and modify the main function so that it creates and uses several
CreditCardAccount objects.

Console::WriteLine("Creating first object");
CreditCardAccount ^account1;
account1 = gcnew CreditCardAccount(12345, 2000);
account1->MakePurchase(300);
account1->PrintStatement();
Console::WriteLine("\nCreating second object");
CreditCardAccount ^account2;
account2 = gcnew CreditCardAccount(67890, 5000);
account2->MakePurchase(750);
account2->PrintStatement();

5.	 Build the application, fix any compiler errors, and then run the application.

Every time a new CreditCardAccount object is created, the application increments numberOf
Accounts and displays its latest value.

90   Microsoft Visual C++/CLI Step by Step

Defining class-wide member functions
It can be dangerous to make data members public; preferably, you want to give users access through
member functions. To give access to a static data member, you can define a static member function.
To define a class-wide member function, use the static keyword in the function declaration like this:

ref class CreditCardAccount
{
public:
 static int GetNumberOfAccounts();
 // ... Other members, as before
};

Implement the function in the source file to match the code snippet that follows. Keep in mind that
you don’t use the static keyword on the implementation, but only on the declaration inside the class
definition.

int CreditCardAccount::GetNumberOfAccounts()
{
 return numberOfAccounts;
}

Note  Because it is not associated with an instance but with the class as a whole, a static
member function can only access static class members. For example, GetNumberOfAccounts
can access numberOfAccounts, but it cannot access accountNumber, currentBalance, or
creditLimit, because they are part of an instance.

To call a static member function, use the class name rather than a particular instance, as shown in
this example:

int n = CreditCardAccount::GetNumberOfAccounts();

The use of the class name emphasizes the fact that GetNumberOfAccounts is a class-wide member
function rather than an instance member function.

Note  You have seen the syntax ClassName::FunctionName before. Every time you display a
message on the console, you use a statement such as Console::WriteLine(“Hello world”). This
statement calls the static member function WriteLine on the Console class.

In this exercise, you will define a static GetNumberOfAccounts member function in the Credit
CardAccount class. You will then call this function several times in main.

1.	 Continue using the project from the previous exercise.

2.	 Open CreditCardAccount.h and declare the GetNumberOfAccounts function as follows:

	 Chapter 6  More about classes and objects    91

ref class CreditCardAccount
{
public:
 static int GetNumberOfAccounts();
 // ... Other members, as before
};

3.	 Open CreditCardAccount.cpp and implement the GetNumberOfAccounts function as follows:

int CreditCardAccount::GetNumberOfAccounts()
{
 return numberOfAccounts;
}

4.	 Open CreditOrganizer.cpp and modify the main function so that it calls GetNumberOf
Accounts at various stages during execution.

int n = CreditCardAccount::GetNumberOfAccounts();
Console::Write("Number of accounts initially: ");
Console::WriteLine(n);
Console::WriteLine("\nCreating first object");
CreditCardAccount ^account1;
account1 = gcnew CreditCardAccount(12345, 2000);
account1->MakePurchase(300);
account1->PrintStatement();
Console::WriteLine("\nCreating second object");
CreditCardAccount ^account2;
account2 = gcnew CreditCardAccount(67890, 5000);
account2->MakePurchase(750);
account2->PrintStatement();
n = CreditCardAccount::GetNumberOfAccounts();
Console::Write("\nNumber of accounts now: ");
Console::WriteLine(n);

5.	 Build the application, fix any compiler errors, and then run the application.

The application displays the messages depicted in the following screen shot:

92   Microsoft Visual C++/CLI Step by Step

Class constructors
Suppose that you have a class-wide member but you cannot give it a value until run time. For ex-
ample, you want to set the interest rate for the CreditCardAccount class to the current rate at the time
the application starts.

Unlike standard C++, C++/CLI embodies the concept of a static constructor. An ordinary construc-
tor is used to initialize instance members when an object is created; a static constructor is used to do
once-only initialization for a class. You use them to do any setup that is needed before your class is
used, and it is guaranteed to run before the class is used. This means that it is called before any ob-
jects of that type are created or before any static members of the class are used. It is as if the compiler
makes sure that the static constructor is called the first time it meets a mention of the name Credit-
CardAccount.

A static constructor is like a normal constructor: it has the same name as the class, and no return
type. In addition, static constructors have the static modifier and do not take any arguments:

ref class MyClass
{
public:
 static MyClass() { ... }
 ...
};

You can easily rewrite the CreditCardAccount class so that is uses a static constructor to initialize an
interestRate member.

1.	 Continue using the project from the previous exercise.

2.	 Open CreditCardAccount.h and add a declaration for a private member called interestRate.

static double interestRate;

3.	 Add the declaration for a static constructor in the public section of the class declaration.

static CreditCardAccount();

4.	 Open CreditCardAccount.cpp and add the implementation of the static constructor. The call
to WriteLine will help you see when the constructor is called.

static CreditCardAccount::CreditCardAccount()
{
 interestRate = 4.5;
 Console::WriteLine("Static constructor called");
}

Be aware that you need the static keyword here. You don’t normally use static outside the
class declaration, but in this case it is needed so that the compiler can determine that this is
the static constructor.

	 Chapter 6  More about classes and objects    93

5.	 Build and run the application. Here is the code that you should have at the top of main:

int n = CreditCardAccount::GetNumberOfAccounts();
Console::Write("Number of account initially:");
Console::WriteLine(n);
Console::WriteLine("\nCreating first object");
CreditCardAccount ^account1;
account1 = gcnew CreditCardAccount(12345, 2000);

The output from running the application appears as follows:

Static constructor called
Number of accounts initially: 0

You can see from this that the static constructor is called immediately before the first object is
created.

Using constants in classes

You will often find that you need to represent constant values in your classes, members whose value
cannot change as execution proceeds. These constants might be of two types:

■■ Those which are constant and common to every object in the class. For example, a Car class
might have a numberOfWheels member that is common to every Car instance and which has
a fixed value of 4.

■■ Those that are constant, but might be different for each object. For example, a BankAccount
object has an account number; this is individual to each instance but cannot be changed after
it has been set.

Using class-wide constants
A class-wide constant represents a value that is common to all instances of a class. For our Credit
Account example, suppose that this kind of credit card account has a name, such as “Super Platinum
Card.” This name will apply to all cards of the same type, so it logically belongs to the class rather
than each instance. Let us further suppose that the name associated with the card class isn’t going to
change. This makes it a candidate for a class-wide constant.

You can create a class-wide constant by using the literal keyword, as shown here:

literal String ^name = "Super Platinum Card";

A literal can have an initial value placed in the class definition. If you do this, it must be a value that
the compiler can calculate. In other words, it can’t depend on something that will only be known at
run time.

94   Microsoft Visual C++/CLI Step by Step

Let’s see how to add the name to the CreditAccount class.

1.	 Continue using the project from the previous exercise.

2.	 Open CreditAccount.h and add the declaration of a literal to the public section of the class
declaration.

literal String ^name = "Super Platinum Card";

Because name is a constant, we can make it public because there is no danger that anyone can
modify it. You can declare literals of built-in types, ref types, and value types.

3.	 You can access the literal through the class name. Add the following code to display the name
to the start of main, before you create any CreditCardAccount objects:

Console::Write("Card name is ");
Console::WriteLine(CreditCardAccount::name);

Because the name belongs to the class, you do not have to have any instances in existence in
order to use it.

4.	 Build and run the application to see the value of the name printed out.

Literals and const
In standard C++, you would use a static const member to represent a class-wide constant.
Although C++/CLI supports this, constants declared in this way are not recognized as compile-
time constants if the class is accessed via a #using statement. Therefore, you are recommended
to use literal, because members declared in this way behave as expected.

Using instance constants
You can use the initonly keyword to mark a data member as per-instance constant. A data member
marked as initonly can have its value set in the constructor for the class but cannot be modified after
that. The following short exercise shows you how to use initonly in the CreditCardAccount class.

1.	 Open CreditAccount.h and add initonly to the declaration of accountNumber.

initonly long accountNumber;

2.	 Build the application.

It should run exactly the same as before because you are setting the value for accountNumber
in the constructor, as required by initonly.

	 Chapter 6  More about classes and objects    95

3.	 Open CreditAccount.cpp and try to assign a new value to accountNumber in one of the other
member functions, such as SetCreditLimit.

4.	 Notice that accountNumber is underlined in red, and if you hover over the variable name, a
ToolTip appears, informing you that the variable cannot be modified here.

5.	 Remove this line of code before continuing!

Defining object relationships

For the remainder of this chapter, you will see how to define relationships between objects in a C++/
CLI application. Applications typically contain many objects, and these objects communicate with one
another to achieve the overall functionality needed in the application.

To illustrate object relationships, you will add a new class named LoyaltyScheme to your credit card
application. With the LoyaltyScheme class, credit card owners can collect bonus points when they use
their credit card. These points act as a reward for the customer’s loyal use of the credit card.

When a CreditCardAccount object is first created, it doesn’t have a LoyaltyScheme object. The
LoyaltyScheme object is created when CreditCardAccount reaches 50 percent of its credit limit. Subse-
quently, every $10 spent using the credit card will add one bonus point to the LoyaltyScheme object,
as long as the account stays above the 50 percent mark.

To achieve this functionality, you will complete the following exercises:

■■ Define the LoyaltyScheme class

■■ Implement the LoyaltyScheme class

■■ Create and use LoyaltyScheme objects

■■ Test the application

Defining the LoyaltyScheme Class
In this exercise, you will define the LoyaltyScheme class in a new header file named LoyaltyScheme.h.

1.	 Continue using the project from the previous exercise.

2.	 On the Project menu, click Add New Item.

3.	 In the Add New Item dialog box, select the template Header File (.h). In the Name box, type
LoyaltyScheme.h, and then click Add.

96   Microsoft Visual C++/CLI Step by Step

4.	 Type the following code in the header file to define the LoyaltyScheme class:

ref class LoyaltyScheme
{
public:
 LoyaltyScheme(); // Constructor
 void EarnPointsOnAmount(double amountSpent); // Earn one point per $10 spent
 void RedeemPoints(int points); // Redeem points
 int GetPoints(); // Return the value of totalPoints
private:
 int totalPoints; // Total points earned so far
};

5.	 Build the application and fix any compiler errors.

Implementing the LoyaltyScheme class
In this exercise, you will implement the LoyaltyScheme class in a new source file named
LoyaltyScheme.cpp.

1.	 Continue using the project from the previous exercise.

2.	 On the Project menu, click Add New Item.

3.	 In the Add New Item dialog box, select the template C++ File (.cpp). In the Name box, type
LoyaltyScheme.cpp, and then click Add.

Visual Studio creates an empty source file.

4.	 Add two #include statements at the beginning of the file, as shown here:

#include "stdafx.h"
#include "LoyaltyScheme.h"

5.	 Add the following code to expose the System namespace:

#using <mscorlib.dll>
using namespace System;

6.	 Implement the LoyaltyScheme constructor as follows:

LoyaltyScheme::LoyaltyScheme()
{
 Console::WriteLine("Congratulations, you now qualify for"
 " bonus points");
 totalPoints = 0;
}

	 Chapter 6  More about classes and objects    97

7.	 Implement the EarnPointsOnAmount member function as follows:

void LoyaltyScheme::EarnPointsOnAmount(double amountSpent)
{
 int points = (int)(amountSpent/10);
 totalPoints += points;
 Console::Write("New bonus points earned: ");
 Console::WriteLine(points);
}

The syntax (int)(amountSpent/10) divides the amount spent by 10 and converts the value to
an int.

8.	 Implement the RedeemPoints member function as follows:

void LoyaltyScheme::RedeemPoints(int points)
{
 if (points <= totalPoints)
 {
 totalPoints -= points;
 }
 else
 {
 totalPoints = 0;
 }
}

This function makes it possible for the user to redeem some or all of the accrued bonus points.

9.	 Implement the GetPoints member function as follows:

int LoyaltyScheme::GetPoints()
{
 return totalPoints;
}

10.	 Build the application and fix any compiler errors.

Creating and using LoyaltyScheme objects
In this exercise, you will extend the CreditCardAccount class to support the loyalty scheme
functionality.

1.	 Continue using the project from the previous exercise.

2.	 Open CreditCardAccount.h. At the beginning of the file, add an #include directive as follows:

#include "LoyaltyScheme.h"

This makes it possible for you to use the LoyaltyScheme class in this header file.

98   Microsoft Visual C++/CLI Step by Step

3.	 Add a private data member to the CreditCardAccount class as follows:

LoyaltyScheme ^scheme; // Handle to a LoyaltyScheme object

This handle represents an association between a CreditCardAccount object and a
LoyaltyScheme object.

4.	 Add a public member function to the CreditCardAccount class as follows:

void RedeemLoyaltyPoints();

This function acts as a wrapper to the RedeemPoints function in the LoyaltyScheme class.
When you want to redeem loyalty points, you call RedeemLoyaltyPoints on your CreditCard
Account object. This function calls RedeemPoints on the underlying LoyaltyScheme object to
do the work.

Note  Relying on another object to do some work for you is an example of delega-
tion. The CreditCardAccount object delegates the management of loyalty points to
the LoyaltyScheme object.

5.	 Open CreditCardAccount.cpp and find the CreditCardAccount constructor. Add the following
statement in the constructor body:

scheme = nullptr;

This statement sets the initial value of the scheme handle to nullptr. This is a special value for a
handle, indicating that the handle doesn’t yet point to an object. In our application, the scheme
object won’t be created until the credit card balance reaches 50 percent of the credit limit.

Note  There is a big difference between not initializing the scheme handle at all and
initializing it to nullptr. Although the compiler is good at detecting attempts to use
uninitialized variables, it is good practice to explicitly initialize handles to null.

6.	 Modify the MakePurchase function to match the code that follows to collect bonus points
when the credit card balance reaches 50 percent of the credit limit:

bool CreditCardAccount::MakePurchase(double amount)
{
 if (currentBalance + amount > creditLimit)
 {
 return false;
 }
 else
 {
 currentBalance += amount;

 // If current balance is 50% (or more) of credit limit...
 if (currentBalance >= creditLimit / 2)

	 Chapter 6  More about classes and objects    99

 {
 // If LoyaltyScheme object doesn't exist yet...
 if (scheme == nullptr)
 {
 // Create it
 scheme = gcnew LoyaltyScheme();
 }
 else
 {
 // LoyaltyScheme already exists,
 // so accrue bonus points
 scheme->EarnPointsOnAmount(amount);
 }
 }
 return true;
 }
}

7.	 Implement the RedeemLoyaltyPoints function as shown in the code that follows. Redeem
LoyaltyPoints is a new member function by which the user can redeem some or all of the
loyalty points in the associated LoyaltyScheme object.

void CreditCardAccount::RedeemLoyaltyPoints()
{
 // If the LoyaltyScheme object doesn't exist yet...
 if (scheme == nullptr)
 {
 // Display an error message
 Console::WriteLine("Sorry, you do not have a "
 "loyalty scheme yet");
 }
 else
 {
 // Tell the user how many points are currently available
 Console::Write("Points available: ");
 Console::Write(scheme->GetPoints());
 Console::Write(". How many points do you want "
 " to redeem? ");
 // Ask the user how many points they want to redeem
 String ^input = Console::ReadLine();
 int points = Convert::ToInt32(input);
 // Redeem the points
 scheme->RedeemPoints(points);
 // Tell the user how many points are left
 Console::Write("Points remaining: ");
 Console::WriteLine(scheme->GetPoints());
 }
}

100   Microsoft Visual C++/CLI Step by Step

Note  It’s important to check the value of the scheme handle before you use it. If you
forget to check the value and the handle is still null, your application will crash at run
time. This is a very common error in C++ applications.

8.	 Build the application and fix any compiler errors.

Testing the application
In this exercise, you will modify the code in CreditOrganizer.cpp to test the loyalty scheme functionality.

1.	 Continue using the project from the previous exercise.

2.	 Open CreditOrganizer.cpp and modify the main function as follows:

Console::WriteLine("Creating account object");
CreditCardAccount ^account1;
account1 = gcnew CreditCardAccount(12345, 2000);
Console::WriteLine("\nMaking a purchase (300)");
account1->MakePurchase(300);
Console::WriteLine("\nMaking a purchase (700)");
account1->MakePurchase(700);
Console::WriteLine("\nMaking a purchase (500)");
account1->MakePurchase(500);
Console::WriteLine("\nRedeeming points");
account1->RedeemLoyaltyPoints();

3.	 Build the application and fix any compiler errors.

4.	 Run the application.

The application creates a CreditCardAccount object and makes various purchases. When the
credit card balance reaches $1,000, a LoyaltyScheme object is created. Subsequent purchases
collect a loyalty point for every $10 spent.

When you try to redeem loyalty points, the application informs you of how many points are avail-
able and asks how many you want to redeem. Type a value such as 36 and press Enter. The applica-
tion displays how many points are left.

The following screen shot shows the messages displayed on the console during the application.

	 Chapter 6  More about classes and objects    101

Quick reference

To Do this

Define a class. Add a header file to your project. Define the class in the
header file. For example:

ref class MyClass
{
public:
 void MyFunction();
private:
 int myData;
};

Implement a class. Add a source file to your project. In the source file, use a
#include statement to include the header file that con-
tains the class definition. Then implement the member
functions in the source file. For example:

#include "MyHeader.h"
void MyClass::MyFunction()
{
 myData = myData * 2;
}

Provide a constructor for a class. Declare the constructor in the header file, and implement
it in the source file. The constructor must have the same
name as the class and cannot return a value. However, a
constructor can take parameters. For example:

// Header file
ref class MyClass
{
public:
 MyClass(int n);
 ...
};
// Source file
MyClass::MyClass(int n)
{
 myData = n;
}

102   Microsoft Visual C++/CLI Step by Step

To Do this

Create instances of a class. Create an object by using the gcnew keyword, passing
parameters into the constructor, if necessary. Assign the
resulting handle to a variable of the appropriate type. For
example:

MyClass^ myObject;
myObject = gcnew myClass(100);
myObject->MyFunction();

Define class-wide (static) data members. Declare the data member by using the static keyword,
initializing it, if appropriate. For example:

ref class MyClass {
private:
 static int myClassData = 0;
 ...
};

Define and use class-wide (static) member functions. Declare the member function by using the static
keyword. Implement the member function in the
source file. Call the function by using the syntax
ClassName::FunctionName. For example:

// Header file
ref class MyClass
{
public:
 static void MyClassFunction();
 ...
};
// Source file
void MyClass::MyClassFunction()
{
 myClassData++;
}
// Client code
MyClass::MyClassFunction();

Define relationships between classes. Define all the required classes and use handles to denote
relationships between objects. For example, if an instance
of class A needs to point to an instance of class B, use the
following:

ref class B
{
 ...
};

ref class A
{
 ...
private:
 B^ handleToB;
};

		 103

C H A P T E R 7

Controlling object lifetimes

After completing this chapter, you will be able to:

■■ Describe how Microsoft .NET memory management differs from traditional C++ memory
management.

■■ Provide finalizers and destructors for your classes.

■■ Create objects by using stack semantics.

Now that you know how to create objects in C++/CLI by using the gcnew operator, it’s time to
learn how to control object lifetimes as well as another way to create and use objects.

The .NET approach to object lifetimes

We’ve seen what happens at the start of an object’s life, but what happens when an object is no
longer required?

There are two things that need to happen when an object comes to the end of its life:

■■ You might want to do some clean-up before the object is destroyed, such as writing data back
to a database

■■ The object’s memory needs to be reclaimed by the runtime

Let’s see how this is done in C++/CLI. In .NET, like Java and many other modern languages, the
runtime is responsible for ensuring that memory from dead objects is reclaimed. The component
that does this is called the garbage collector. The runtime keeps track of handles to objects, and when
an object can no longer be referenced through any handle, it is unreachable and is a candidate for
garbage collection.

This means that programmers need to keep several things in mind:

■■ Objects are always used through handles, because that’s the way that the system keeps track
of them.

■■ An object will always be available as long as there is at least one handle to it.

■■ You cannot tell when an object’s memory will be reclaimed; this is up to the garbage collector.

104   Microsoft Visual C++/CLI Step by Step

.NET garbage collection
The garbage collection mechanism in the .NET Framework is very sophisticated, but you don’t
need to know much about the details to use C++/CLI. In fact, it’s designed to work fine with-
out any intervention from you at all. However, if you’re interested to know a little more about
what’s happening, read on.

Memory for objects is allocated from the managed heap, an area of memory that the .NET
runtime uses to store dynamically allocated objects. Every allocation takes some space from the
heap, and it’s possible that at some point heap memory will be exhausted, or (more likely) there
won’t be a piece large enough for the new allocation. If a request for memory fails, the garbage
collector will be invoked to see if there are any unreferenced objects whose memory can be
reclaimed to free up some heap memory.

The basic process is as follows:

■■ Find all the objects that are still alive. This means starting with handles to objects in the
code. Then, follow any handles to other objects that they might have. This repeats to
the end of each chain of objects.

■■ When all the live objects have been marked, assume that all the rest of memory is
garbage.

■■ Move the live objects, compacting them to create the maximum amount of free space.

■■ Fix up the handles to the live objects so that they point to new locations.

This should explain why you refer to objects by using handles: not only does it let the run-
time track what is using an object, it also isolates the user from where exactly in memory the
object is right at the moment.

In reality, it’s not quite that simple. Garbage collection is expensive and affects the operation
of your applications, so it’s best to not run a collection on the whole of memory if you don’t
have to. When designing .NET, Microsoft discovered an interesting fact: the longer an object
lives, the longer it is likely to live. In other words, applications tend to have a lot of objects that
come and go rapidly, and others that live for a long time.

This led them to the idea of generations. Every dynamically created .NET object belongs to
a generation, and each generation has its own area of the managed heap. Objects belong to
generation 0 when they are created; if generation 0 fills up, no more new objects can be cre-
ated. At this point, the garbage collector runs on the generation 0 objects only. Any objects
that survive this collection are promoted to generation 1, and generation 0 is cleared ready for
more new objects. Microsoft’s observation was that many objects live and die in generation 0,
so longer-lived objects can be left alone.

	 Chapter 7  Controlling object lifetimes    105

At present, the .NET garbage collector has three generations (0, 1, and 2). You usually let the
garbage collector decide when to perform a collection and which generation to collect, but
you can use the System::GC::Collect static method to force a collection if you know you’ll have a
lot of reclaimable objects in your code. With Collect, you can run a default collection or specify
a particular generation. If you’re interested in finding out to which generation a particular object
belongs to, you can use the System::GC::GetGeneration method, passing in an object reference.

Destruction and finalization

Before we can start looking at code, let’s introduce two new terms. Finalization is what happens when
an object’s memory is about to be reclaimed and is under the control of the garbage collector. You
can provide code to be executed at this point, in the form of a finalizer method on your class.

But it might be that you know definitely at some point in the code that you no longer need the
object, and you would like it to tidy itself up there and then. For example, if you are working with a
Customer object, you might want the object to save its data back to the database when you’ve fin-
ished with it. This is called destruction, and you can provide a destructor method in your class.

With C++/CLI, you can provide code to be executed at both these points in an object’s lifecycle, as
you will see in the following sections.

Destructors
A destructor is executed when you no longer need an object. To provide a destructor for a class, add
a member function that has the same name as the class but is preceded by a tilde character (~).

ref class MyClass
{
public:
 MyClass(); // constructor
 ~MyClass(); // destructor
};

You can signal that you no longer need an object by calling delete on a handle to the object.

// Create an Account
Account ^acc = gcnew Account();

// Use the Account

// We no longer need the Account
delete acc;

At this point in the code the destructor is called; thus, you know exactly where and when the
object has ceased to operate.

106   Microsoft Visual C++/CLI Step by Step

Here are three points you should note about destructors:

■■ Like the constructor, they have no return type, and it is an error to give them one.

■■ They do not take any arguments, which means they cannot be overloaded.

■■ Destructors are usually public members of a class. If you make them private, you might not be
able to destroy objects of that type.

Finalizers
Finalizers are called when the garbage collector finally reclaims the object’s memory. You will need a
finalizer if you have unmanaged resources, such as pointers to unmanaged classes, file handles, win-
dow handles, graphic device contexts, and so on. If you don’t have any of those—and you’ll only tend
to do that when you are working with unmanaged code—you probably don’t need a finalizer.

A finalizer is a member function that has the same name as the class but is preceded by an excla-
mation mark (!).

ref class MyClass
{
public:
 MyClass(); // constructor
 !MyClass(); // finalizer
};

You can see that finalizers obey the same rules as destructors; they have the same name as the
class and don’t have a return type or take arguments.

A few points about finalizers
There are three things that you should be aware of when using finalizers.

First, don’t define a finalizer for your class if you don’t have anything for it to do. In most cases,
adding an empty function to a class will have little effect, but that isn’t the case for finalizers. If the
garbage collector sees that your class implements a finalizer, it knows that it has to run this before
reclaiming objects of that type, and this slows down the collection process.

Second, no guarantee is made as to the order in which finalizers will run, which can be problematic
if objects have dependencies on one another. Suppose that two objects, A and B, both have a final-
izer, and that both of them update a data resource. Both finalizers will be called when the objects are
destroyed, but you can’t know which one will be called first. This means that you can’t determine in
what order data will be written to the data resource, which could cause a problem.

And third, finalizers aren’t called during application termination for objects that are still live, such
as those being used by background threads or those created during the execution of a finalizer.
Although all system resources will be freed up when the application exits, objects that don’t have
their finalizers called might not get a chance to clean up properly.

	 Chapter 7  Controlling object lifetimes    107

This might give you the impression that finalizers should be avoided. Although they are useful in
some situations, you will find that you can normally do whatever cleanup you require in the destructor.

Implementing the destructor and finalizer for a class
In this exercise, you will see how to create and use the finalizer and destructor for a class.

1.	 Start Visual Studio 2012 and create a new CLR Console Application called Lifetimes.

2.	 On the Project menu, click Add New Item.

3.	 In the Add New Item dialog box, in the pane on the left, select Visual C++, and then, in the
center pane, click Header File (.h).

4.	 Toward the bottom of the dialog box, in the Name field, type MyClass.h, and then click Add.

Note  Another way that you can open the Add New Item dialog box is to right-click
the project name in Solution Explorer and then, in the shortcut menu that appears,
point to Add, and then click New Item.

5.	 Open the header file and add the declaration for a class that has a constructor, a destructor, a
finalizer, and a single work method, which you will call to show that the object can be used.

using namespace System;

ref class MyClass
{
 String ^name;
public:
 MyClass(String ^objectName); // constructor
 ~MyClass(); // destructor
 !MyClass(); // finalizer
 void DoSomething(); // 'work' method
};

6.	 Repeat steps 2 through 4, but this time add a source file called MyClass.cpp to the project.
Open the file and add #include statements for stdafx.h and MyClass.h.

#include "stdafx.h"
using namespace std;

#include "MyClass.h"

7.	 Implement the constructor so that it stores the name in the data member and prints a mes-
sage to show that has been called.

MyClass::MyClass(String ^objectName)
{
 name = objectName;
 Console::WriteLine("Constructor called for {0}", name);
}

108   Microsoft Visual C++/CLI Step by Step

Note  Up to this point, you have used multiple Write and WriteLine statements to
build up a line of output. This exercise introduces a more efficient way: call WriteLine
or Write with a string that contains text and markers that consist of a number in
braces, such as {0} and {1}. The string should be followed by a list of items that you
want to print out. The first item will be output in place of {0}, the second in place of
{1}, and so on. We will use this from now on to save typing (and paper!).

8.	 Implement the destructor to print a message to show that has been called.

MyClass::~MyClass()
{
 Console::WriteLine("Destructor called for {0}", name);
}

9.	 Implement the finalizer to print a message to show that it has been called.

MyClass::!MyClass()
{
 Console::WriteLine("Finalizer called for {0}", name);
}

10.	 Implement the DoSomething method to print out a message. This is to show that the object
has been used between creation and destruction.

void MyClass::DoSomething()
{
 Console::WriteLine("DoSomething called for {0}", name);
}

11.	 Build the project and fix any compiler errors.

Using the finalizer
In this exercise you will see how the finalizer for a class is called.

1.	 Continue using the project from the previous exercise.

2.	 Open Lifetimes.cpp and in the main method of the application, create an object by using
gcnew, and then call DoSomething. Remember to add a #include for MyClass.h, as shown here:

#include "MyClass.h"

int main(array<System::String^>^ args)
{
 MyClass ^m1 = gcnew MyClass("m1");
 m1->DoSomething();

 Console::WriteLine();
 Console::WriteLine("End of program");
 Console::WriteLine();
 return 0;
}

	 Chapter 7  Controlling object lifetimes    109

3.	 Build and run the application.

Output similar to the following appears:

Constructor for m1
DoSomething called

End of Program

Finalizer called for m1

When you create an object, its constructor is called. If the application finishes and the object hasn’t
been destroyed, the garbage collector will call the finalizer to clear up any unmanaged resources
associated with the object.

Using the destructor
In this exercise you will see how the destructor for a class is called.

1.	 Continue using the project from the previous exercise.

2.	 Edit the code so that you explicitly delete the object after using it. Do this by inserting a call to
delete after the call to DoSomething.

MyClass ^m1 = gcnew MyClass("m1");
m1->DoSomething();
delete m1;

3.	 Build and run the application.

Output similar to the following appears:

Constructor called for m1
DoSomething called for m1
Destructor called for m1

End of Program

Notice that two things have happened: first, the destructor has been called at the point where you
called delete; second, the finalizer was not called at the end of the application.

The destructor being called when you call delete means that you have complete control over when
objects tidy themselves up. This deterministic destruction is a hallmark of traditional C++, and it is the
basis of many common C++ coding idioms. You should make a habit of calling delete on your object
handles when you no longer need them.

We also saw that as a result of calling delete, the finalizer wasn’t executed. The garbage collector
decides that you have dealt with the disposal of an object if its destructor has been executed, and
so it doesn’t need to execute its finalizer. This means that if you do have a finalizer, you should call it
from the destructor to ensure that all unmanaged resources are freed up no matter how your objects
exit.

110   Microsoft Visual C++/CLI Step by Step

MyClass::~MyClass()
{
 // Free up managed resources: this will be done anyway by the runtime
 // Now call the finalizer to free unmanaged resources
 this->!MyClass()
}

Objects and stack semantics
It might seem rather tedious to have to create objects by using gcnew and then call delete on the
handles when you have finished using them. After all, wasn’t the idea of garbage collection supposed
to be that you didn’t have to keep track of your objects when you finished with them?

It is important not to confuse the concept of an object tidying up after itself with the runtime
reclaiming the object’s memory; the two are independent of one another. You might want to say what
an object does to tidy up when you have finished with it but not really care when the garbage collec-
tor decides to reclaim its memory. In this case, you would implement a destructor, which you can then
call by using delete.

Traditional C++ object creation and destruction
Traditional C++ objects can also have destructors and be dynamically created and destroyed in a
manner very similar to the one to which you have become accustomed. They use new instead of
gcnew, but the mechanism is very similar.

There is, however, another way by which objects can be created in standard C++, and that is to
create them on the stack as local objects, such as illustrated in the following:

MyClass m("m3");
m.DoSomething();

You can see two differences from C++/CLI code here. The more obvious of them is that you don’t
use gcnew and you don’t create a handle. This syntax creates an object called m, and the constructor
parameters are passed after the object name in the same way as they were passed to gcnew when
creating an object dynamically. The second obvious difference is that members of the object are
accessed by using the dot operator (.) rather than ->.

There is one important consequence to creating objects in this way, apart from it taking slightly
less typing. When you create an object in this manner, its destructor is called automatically at the end
of the block of code. This is shown in the following code sample:

{
 MyClass m("m3");
 m.DoSomething();
} // Destructor for m is called here

Such objects are sometimes called automatic objects because they are automatically destroyed
when they go out of scope.

	 Chapter 7  Controlling object lifetimes    111

Note  In C++, scope refers to where in the code an object is visible. It is often related to an
object’s lifetime. In this case, m cannot be seen outside the block, so it goes out of scope at
the final brace.

This is a huge benefit to programmers: you can create an object and then know exactly where and
when it will be destroyed and tidy itself up without the need for you to call delete. In standard C++
these objects are created in an area of memory called the stack, and so we say that these objects
exhibit stack semantics.

Creating objects with stack semantics
In C++/CLI, you can create your objects in the same way, as you will see in the next exercise.

Note  In C++/CLI, these objects are not actually declared on the stack. This notation is a
convenience that makes it possible for you to work with objects in the traditional C++ way,
but under the hood, our objects are still created and managed by using handles.

1.	 Continue using the project from the previous exercise.

2.	 Edit the main function by adding code to create and use another object, placing it before the
“end of program” WriteLine calls. Ensure that you create this object by using stack semantics.

MyClass m2("m2");
m2.DoSomething();

3.	 Build and run the application.

After the output for m1, you should see output similar to the following:

Constructor called for m2
DoSomething called for m2

End of Program
Destructor called for m2

You create and use the object, but do not manually delete it. The destructor is called automatically
when execution passes the end curly bracket in the function.

Note  You can create most types of objects by using stack semantics, but you cannot do
this for Strings or arrays. For those types you must use gcnew to get a handle, and you
access the objects by using the -> operator.

112   Microsoft Visual C++/CLI Step by Step

The Resource Acquisition Is Initialization idiom
Resource Acquisition Is Initialization (RAII) is an awkward phrase that is used to describe a very
common programming style in C++, one that is useful in many circumstances. You will find that
you often want an object to do something when you create it and then do a matching action
when the object dies. For example, open a file and then ensure that it is closed, or read data
from a database and then ensure that it is updated.

In C++, you can pair up these actions by performing the action in a constructor and then
performing the matching action in the destructor. In this way, you can be certain that the
matching action will be performed without you having to remember to do it.

Here’s an example: suppose that you want to change the cursor to an hourglass before start-
ing a long-running operation and then revert to the arrow cursor upon completion. You could
code it up like this:

void DoLongOperation()
{
 SetCursorToHourglass();

 // Lots of complex code...

 SetCursorToArrow();
}

That is fine, but what if you forget to switch the cursor back? Or more likely, what happens
if an error occurs and the SetCursorToArrow line is never executed? You are left with the cursor
stuck as an hourglass, and the user becomes annoyed.

One solution is to create a small helper class. This carries out one task: it sets the cursor to
an hourglass in its constructor and then sets it back to the arrow in its destructor.

ref class BusyCursorHelper
{
public:
 BusyCursorHelper { SetCursorToHourglass(); }
 ~BusyCursorHelper { SetCursorToArrow(); }
};

You can now recode DoLongOperation to match the following:

void DoLongOperation()
{
 BusyCursorHelper bch();

 // Lots of complex code...
}

	 Chapter 7  Controlling object lifetimes    113

The object is created and sets the cursor. At the final brace, it is destroyed, and that sets the
cursor back to an arrow. Importantly (and as is demonstrated in Chapter 11, “Exception han-
dling”) this even happens if there is an error.

This example of the RIAA idiom—doing something in the constructor and undoing it in the
destructor—shows how sometimes you might create a class simply for the side-effects you get
when using it.

Copy constructors
A copy constructor is a special kind of constructor function that takes an object of the same type as
its argument. In other words, you can create an object as a copy of another one. In this section you’ll
see how to write and use a copy constructor, but you’ll also learn about two other important con-
cepts: dereferencing and tracking references.

Do I need a copy constructor?
Standard C++ makes heavy use of copy constructors because they are needed to support
proper memory management. Referring to ref objects through handles, coupled with garbage
collection, means that you don’t need copy constructors nearly as often in C++/CLI

In standard C++ the compiler will give you a default copy constructor if you do not pro-
vide one. This is not the case in C++/CLI, so if you want to provide copy construction for your
classes, you will need to write a copy constructor.

Let’s start by analyzing what happens in the following piece of code:

ref class MyClass
{
	 int value;
	 String ^str;
public:
	 MyClass(int v, String ^s) : value(v), str(s) {}
	 int getValue() { return value; }
	 String ^getString() { return str; }
};

int main(array<System::String ^> ^args)
{
 Console::WriteLine("Copy Construction");

114   Microsoft Visual C++/CLI Step by Step

	 MyClass ^one = gcnew MyClass(3, "abc");
	 MyClass ^two = one;

	 Console::WriteLine("Value: {0}, str: {1}", two->getValue(), two->getString());

 return 0;
}

If you run this code, it prints out Value: 3, str: abc. The handle one points to a new MyClass
object created through gcnew. The handle two is simply a copy of one; in other words, it points to the
same object as one. Copying a handle doesn’t copy the object to which it points. And, if you modify
the value member of two, the value for one will be changed, as well, because they are referring to the
same object.

Suppose, though, that we did want to make two a copy of one. In that case, we would provide a
copy constructor for the class, which would look like this:

MyClass(const MyClass %other)
{
 value = other.value;
 str = other.str;
}

The constructor takes another MyClass object and copies its members. The value is an int, so a
copy of the value is made. The str member is a handle to a string, but because strings are immutable,
it doesn’t matter that we’re pointing to the same one.

But, look more closely at the declaration of the argument: What is a const MyClass%? The percent
(%) symbol introduces what is called a tracking reference. A handle lets you refer to an object indi-
rectly, and you use the -> operator to access members. A tracking reference is really an alias, another
name for a variable. Consider this code fragment:

int i = 5;
int %ri = i; // ri is a tracking reference

Printing out ri prints “5”, because ri and i refer to the same variable. In many ways references are
safer than handles because it is possible to have a handle that hasn’t been assigned, but it is difficult
to create an uninitialized reference.

You can have references to built-in types, to managed objects, and to handles. When you have a
tracking reference to a managed object, the runtime ensures that it always refers to the right location
in memory, even if the garbage collector moves things around.

Note  In the same way that a handle is the C++/CLI version of a standard C++ pointer, a
tracking reference is the C++/CLI version of a standard C++ reference. It differs from a stan-
dard reference because the garbage collector can relocate the object being referred to dur-
ing memory compaction.

	 Chapter 7  Controlling object lifetimes    115

So, we now know that the copy constructor takes a tracking reference to an object rather than a
handle. The reference is marked as const because it lets us make copies of constant MyClass objects,
which the compiler otherwise would not allow.

The other construct that we need to cover is dereferencing. Here’s another code fragment:

MyClass ^m = gcnew MyClass();
MyClass %rm = *m;

The first line creates a MyClass object by using gcnew and returns a handle to it. The second line
returns a reference to m by using the dereference operator, “*” (the asterisk character). You can read
*m as “what m points to.”

However, this still hasn’t created a copy: m and rm are still referring to the same object in memory.
But, what about this code?

MyClass mm = *m;

Here, mm is a MyClass with stack semantics, and the code is saying “create me a new object, mm,
as a copy of the one to which m is pointing.” It is at this point that the copy constructor is invoked.

This exercise shows you how to implement a copy constructor for a class.

1.	 Create a new CLR Console Application named CopyCon.

2.	 Add the following class definition before the main function:

ref class MyClass
{
 int value;
 String ^str;
public:
 MyClass(int v, String ^s) : value(v), str(s) {}

 MyClass(const MyClass %other)
 {
 Console::WriteLine("copy con called");
 value = other.value;
 str = other.str;
 }

 int getValue() { return value; }
 void setValue(int v) { value = v; }
 String ^getString() { return str; }
};

MyClass has two data members: an int and a String handle. The normal constructor initializes
these two from the values passed in, and you can use the simple getter functions to retrieve
the values later on.

116   Microsoft Visual C++/CLI Step by Step

3.	 Implement the main function to create and use MyClass objects:

int main(array<System::String ^> ^args)
{
 Console::WriteLine("Copy Construction");

 MyClass ^one = gcnew MyClass(3, "abc");
 MyClass ^two = one;

 Console::WriteLine("Value: {0}, str: {1}", two->getValue(), two->getString());

 MyClass three = *one;
 three.setValue(4);
 Console::WriteLine("Value of one: {0}", one->getValue());
 Console::WriteLine("Value of three: {0}", three.getValue());

 return 0;
}

The handle one is created to point to a MyClass object, and the handle two is a copy of
one. You can verify this by printing out the data by using the two handle. The object three
is created by dereferencing one, which creates a copy. You can verify that this is the case by
changing the data in three and showing that it hasn’t changed the data in one.

4.	 Build and run the application. Check that you understand the output.

Relating objects with stack semantics
It is common for objects to be composed of other objects. For example, a Person might have an
Address, or a Rectangle might be composed of two Points. Consider the Rectangle as an example.
Because the Points are part of the Rectangle, it is reasonable to expect that when a Rectangle object
is destroyed, its Points are destroyed, as well. If you declare the objects by using stack semantics, you
can easily ensure that this happens.

In this exercise, you will see how to compose objects so that they are destroyed correctly.

1.	 Create a new CLR Console Application project with a suitable name.

2.	 Add a header file called Geometry.h to the project.

3.	 Edit the header file to define two classes: Rectangle and Point. Note that a Rectangle is com-
posed of two Points.

using namespace System;

ref class Point
{
public:
 Point();
 ~Point();
};

	 Chapter 7  Controlling object lifetimes    117

ref class Rectangle
{
 Point p1, p2;
public:
 Rectangle();
 ~Rectangle();
};

4.	 Add a source file called Geometry.cpp to the project and implement the Point and Rectangle
class members.

#include "stdafx.h"
using namespace System;

#include "Geometry.h"

Point::Point()
{
 Console::WriteLine("Point constructor called");
}

Point::~Point()
{
 Console::WriteLine("Point destructor called");
}

Rectangle::Rectangle()
{
 Console::WriteLine("Rectangle constructor called");
}

Rectangle::~Rectangle()
{
 Console::WriteLine("Rectangle destructor called");
}

5.	 Edit main to create a Rectangle object by using stack semantics. Remember to add a #include
for Geometry.h, as shown in the following:

#include "Geometry.h"

int main(array<System::String^>^ args)
{
 Rectangle r;

 Console::WriteLine();
 Console::WriteLine("End of program");
 Console::WriteLine();
 return 0;
}

118   Microsoft Visual C++/CLI Step by Step

6.	 Build and run the application.

You should see output similar to the following:

Point constructor called
Point constructor called
Rectangle constructor called

End of program

Rectangle destructor called
Point destructor called
Point destructor called

You can see from this output that the Point members of the Rectangle are constructed before
the Rectangle’s constructor is called. If you think about it, this is quite logical: when initializing itself,
the Rectangle might want to use the Points to set some other properties, such as its area or diagonal
length. So, it makes sense for the composed objects to be constructed before the constructor for the
outer object is executed.

The destructors are called in reverse order, with the Rectangle destructor being called before
the destructors for the Points. The Point objects are not destroyed until you can be sure that the
Rectangle no longer needs them.

Note  If you want to create an object that takes no arguments in the constructor, do not put
empty parentheses after the variable name.

Rectangle r(); // This won't work

If you do this, you will get a warning (C4930) and the application will not give the correct
output when you run it. The reason is that the compiler takes this as a function prototype
declaration rather than a variable declaration. It is not helpful behavior, but has been a part
of traditional C++ since the earliest implementations.

When to use handles?
If you want a class to contain another object—as in the preceding Rectangle/Point exercise—you have
a choice of how to represent the composed object. You could use an object, as you did in the exer-
cise, or you could use a handle to an object, as in the following code.

ref class Rectangle
{
 Point ^p1;
 Point ^p2;
 ...
};

What is the difference between these two, and why might you choose one over the other?

	 Chapter 7  Controlling object lifetimes    119

The one you choose depends on the nature of the relationship between the two objects. It is be-
yond the scope of this book to give a full explanation of object-oriented design, but here are a couple
of examples to introduce you to the ideas.

The questions you need to ask are the following:

■■ Is the contained object a part of its container, such that it has no independent existence?

■■ Is the contained object shared with anyone else?

■■ Could you swap the contained object for another one?

■■ Can the contained object live on after its container?

Consider the case of an object that represents a business meeting. This has properties such as
description, date and time, but it also has a location, which is represented by a Location object. The
Location object holds all the details about a meeting room: where it is, the phone number, how many
people it can hold, whether it has conference facilities, and so on.

Obviously many meetings can use the same Location at different times, so they will have a refer-
ence to the same Location object. It is also possible that the meeting can be moved, so you need to
be able to change the Location. And obviously, the Location doesn’t cease to exist when a meeting is
over. This makes it a sensible idea to use a handle to a Location object in the Meeting class.

As a second example, consider the Rectangle/Point exercise again. The Points are parts of the
Rectangle; they will disappear when the Rectangle object reaches the end of its life. There is no way
that we are going to share a Point with anyone else, and so it makes sense that Points are contained
within the Rectangle.

Quick reference

To Do this

Define a destructor for a class. Add a member function that has the same name as the
class but prefixed with a tilde (~). For example:

MyClass::~MyClass()
{
 ...
}

Define a finalizer for a class. Add a member function that has the same name as
the class but prefixed with an exclamation mark (!). For
example:

MyClass::!MyClass()
{
 ...
}

Destroy a dynamically created object. Call delete on the handle to the object. For example:

MyClass ^m = gcnew MyClass();
...
delete m;

120   Microsoft Visual C++/CLI Step by Step

To Do this

Create an object with stack semantics. Declare it as you would a built-in type, passing any con-
structor arguments in parentheses. For example:

MyClass m1("argument1");

Create an object with stack semantics that has no
arguments.

Declare it as you would a built-in type, but do not use
empty parentheses. For example:

MyClass m3; // correct
MyClass m4(); // wrong

Call methods on objects with stack semantics. Use the dot operator. For example:

MyClass m5;
m5.DoSomething();

Compose an object that might be shared or changed. Include them by using handles. For example:

ref class Meeting
{
 Location ^location;
 ...
};

Compose an object whose lifetime is bound to its
container.

Include them by using stack semantics. For example:

ref class Rectangle
{
 Point p1;
 Point p2;
 ...
};

		 121

C H A P T E R 8

Inheritance

After completing this chapter, you will be able to:

■■ Describe the importance of inheritance in object-oriented programming.

■■ Define a base class.

■■ Define a derived class.

■■ Access base-class members from the derived class.

■■ Use the virtual keyword to achieve polymorphism.

■■ Define abstract classes and abstract methods.

■■ Define sealed classes.

■■ Use interfaces.

In this chapter, you will learn how to use all aspects of inheritance in C++/CLI. You will see how to
define base classes and derived classes, and you will find out how to use these classes effectively in

your application.

What is inheritance?

Inheritance is an important concept in object-oriented programming, helping us relate and classify
types in a way that makes our applications more type-safe, flexible, and extensible.

Note  Type-safe means that the type system makes it easy to use the correct type in the
correct place, and it’s easy for the compiler to spot any mistakes that you make.

As an example, consider cars, trucks, and buses. All of these are types of vehicles: we can say that a
car “is a” vehicle and that a sports car “is a” car. We tend to classify the world in terms of more general
and more specific types all the time: A manager is also an employee; a savings account is an account;
and so on.

122   Microsoft Visual C++/CLI Step by Step

How we view things depends on the job we need to do. If I just need to drive down the block, I
could use any kind of car; for example, a sports car would do, as would an SUV—as long as it is a car.
But, if I need to take my family to the airport, a sports car won’t do: I need to be more specific.

Inheritance lets you use this classification mechanism in your code. If I am writing an application
to monitor traffic flow, I might have a function to count the number of vehicles passing a given point.
Using inheritance, the compiler knows that cars, trucks, and buses are all vehicles, so I can pass all of
those to the function.

The advantages of inheritance are well documented, resulting in better-structured code that is
easier to work with and maintain.

Inheritance terminology
When you use inheritance you are dealing with an “is a” relationship between a parent class and one
or more child classes. You will find that there are several terms used to describe this relationship,
including the following:

■■ C++ tends to use the term base and derived classes.

■■ Java uses superclass and subclass.

■■ Other languages might use parent and child.

Using the correct terms for your language is, of course, not as important as getting the relation-
ships correct.

Inheritance and code reuse
Suppose that you are designing a Vehicle class and some classes that derive from it. You will put the
things that are common to all vehicles in the Vehicle class, using the derived classes to implement
those features that make them unique.

The derived classes inherit the functionality of the Vehicle class. They have to; otherwise, they
would not be Vehicles. This means that after you have implemented functionality in the Vehicle class,
you don’t have to duplicate it in the derived classes.

It is very important to understand that code reuse is not the main reason for inheritance. Although
it is useful, the main reason why you want to use inheritance is to define relationships between types.
If you happen to also gain the benefit of code reuse, this is a bonus. If you use inheritance solely for
code reuse, you risk building incorrect inheritance models.

	 Chapter 8  Inheritance    123

Designing an inheritance hierarchy

Before you start writing any code to use inheritance in C++, you should spend some time designing
the inheritance hierarchy. Identify classes that have common behavior, and consider whether these
classes would benefit from using inheritance.

In this chapter, you will define and implement an inheritance hierarchy representing different types
of bank accounts. The following illustration shows how the classes will be arranged in the inheritance
hierarchy:

Note  This illustration uses Unified Modeling Language (UML) notation to represent in-
heritance. Each box in this diagram is a class. The arrow pointing to BankAccount denotes
inheritance in UML.

BankAccount is the base class. It defines common data members and member functions that are
common to all kinds of bank accounts.

CurrentAccount and SavingsAccount are derived classes, representing specific types of bank ac-
count. These derived classes inherit all the data members and member functions from BankAccount,
and they can add extra data members and member functions, as required.

CurrentAccount and SavingsAccount can also override member functions defined in BankAccount.
For example, the BankAccount class might have a method named CanDebit to indicate whether a
certain amount of money can be debited from the account. The policy rules for allowing debits are
different for each type of account; therefore, CurrentAccount and SavingsAccount can override the
CanDebit method to perform the required processing for each type of account.

You will define and implement all three of these classes during this chapter. Let’s begin with the
base class, BankAccount.

A word on substitutability
Substitutability means that everywhere you want a base class object, you can use a derived class
object. For example, if I ask you to bring me a vehicle (base class), a car or a truck (derived class) will
suffice because I wasn’t specific. I expect, however, that anything you bring me is a vehicle, and as a
minimum does everything that a vehicle can do.

124   Microsoft Visual C++/CLI Step by Step

For this reason, derived classes can add functionality over and above their base class, and can
redefine operations that they inherit, but they are not allowed to remove functionality.

You can regard the functionality provided by the base class as a contract that the derived class
must honor. If it doesn’t, it is not substitutable for the base class, and the inheritance relationship is
not proper.

Defining a base class

When you define a base class, you can start it by defining the common member functions that will be
required by all the derived classes. After you have defined these member functions, add data mem-
bers to support their implementation. Then, provide one or more constructors to initialize these data
members.

Tip  Always start by deciding what it is that a class must do, and then think about what data
members are needed to support these operations.

In this exercise, you will create a new application and define the BankAccount class. The BankAccount
class will be the base class for all types of bank accounts in the application.

In BankAccount, you will define the common member functions and data members that apply for
all types of bank accounts. You will also define a constructor and destructor for this class.

1.	 Start Visual Studio 2012 and create a new CLR Console Application project named BigBank.

2.	 On the Project menu, click Add New Item.

3.	 In the Add New Item dialog box, in the pane on the left, select Visual C++, and then, in the
center pane, click Header File (.h).

4.	 Toward the bottom of the dialog box, in the Name box, type BankAccount.h, and then click
Add.

Note  Another way that you can open the Add New Item dialog box is to right-click
the project name in Solution Explorer and then, in the shortcut menu that appears,
point to Add, and then click New Item.

5.	 Define the BankAccount class as follows:

#pragma once

using namespace System;

	 Chapter 8  Inheritance    125

ref class BankAccount
{
public:
 BankAccount(String ^holder);
 void Credit(double amount);
 void Debit(double amount);
 double GetBalance();
private:
 String ^accountHolder;
 double balance;
};

Tip  The #pragma once compiler directive specifies that this header file will be pro-
cessed only once by the compiler during a build. This directive is particularly useful
for frequently included header files, such as those containing base-class definitions.

If you omit the #pragma once directive, you will almost certainly get a compiler er-
ror when you try to build the application later on because BankAccount.h will be
included in several different places in the application, and the compiler will generate
an error if it sees the BankAccount class declaration more than once.

Working with floating-point values
In this simple example, the code uses a double to hold the balance. Although this is fine in
this case because we’re not actually concerned that the balance is accurate, you would never
use a double in any place where a floating-point value needs to be exact, such as in banking
calculations.

The reason for this is that arithmetic on float and double values is subject to rounding errors.
Because of the way in which these types are implemented, some values cannot be represented
exactly. It is similar to the way in which 1/3 cannot be exactly represented as a decimal (it is a
repeating value, 0.33333…, which never terminates). This means that arithmetic on such values
ends up accumulating errors due to the approximations involved. These can be very small, but
in some applications they are significant.

Not only might values be inexact, but because of this, it might not be possible to compare
values exactly. Two variables that ought to have the same value might be slightly different
because of accumulated errors during their calculation.

In more serious code, you should use the System::Decimal type, which provides an exact rep-
resentation of floating-point values and is not subject to rounding errors. The downside is that
operations are less efficient than those using float or double.

126   Microsoft Visual C++/CLI Step by Step

6.	 Repeat steps 2 through 4, but this time add a new C++ source file named BankAccount.cpp
to the project.

7.	 Type the following code in the source file to implement the BankAccount class:

#include "stdafx.h"
#include "BankAccount.h"

BankAccount::BankAccount(String ^holder)
: accountHolder(holder), balance(0.0)
{
}

void BankAccount::Credit(double amount)
{
 balance += amount;
}

void BankAccount::Debit(double amount)
{
 balance -= amount;
}

double BankAccount::GetBalance()
{
 return balance;
}

Note  The constructor uses a member initialization list to initialize the BankAccount
data members, which is the preferred syntax for initializing data members in a con-
structor. Furthermore, it’s the only way to invoke base-class constructors, which will
become apparent when you define the CurrentAccount and SavingsAccount classes
shortly.

8.	 Build the application and fix any compiler errors.

Defining a derived class

To define a derived class in C++/CLI, use the following syntax:

ref class MyDerivedClass : MyBaseClass
{
 ...
};

The colon in the class definition indicates inheritance. Following the colon, you specify the name of
the base class.

	 Chapter 8  Inheritance    127

Note  In standard C++ you would put one of the keywords public, protected, or private after
the colon and before the base class name. C++/CLI (and all other Microsoft .NET languages)
only support public inheritance, so you do not need to use the public keyword. It is not an
error if you use it, but be aware that it is not required.

Inheritance and System::Object
In .NET, every class derives ultimately from the System::Object class. If you don’t specify a base
class, the class you create will implicitly have “: System::Object” added to its declaration. This
means that every object you create “is a” System::Object, and also that all classes inherit the
common functionality that Object provides, such as the ToString function.

In this exercise, you will define and implement the CurrentAccount and SavingsAccount classes.
CurrentAccount will inherit from BankAccount, which means that there is no need to reimplement
inherited member functions such as Credit and Debit. Likewise, there is no need to redefine inher-
ited data members such as accountHolder and balance. All you need to define in CurrentAccount are
additional member functions and data members, which apply specifically to current accounts.

SavingsAccount will have an interest rate associated with it. Because the interest rate is common to
all SavingsAccount objects, it makes sense to make it a static member of the class.

1.	 Continue using the project from the previous exercise.

2.	 Add a new header file to the project named CurrentAccount.h.

3.	 Type the following code in the header file to define the CurrentAccount class:

#pragma once

#include "BankAccount.h"

ref class CurrentAccount : BankAccount
{
public:
 CurrentAccount(String ^holder, double limit);
 void ChangeOverdraftLimit(double newLimit);
 double GetOverdraftLimit();
private:
 double overdraftLimit;
};

Notice the #include “BankAccount.h” directive. This directive is required because BankAccount
is the base class of CurrentAccount. The compiler needs to know how BankAccount is defined
to compile the CurrentAccount class.

128   Microsoft Visual C++/CLI Step by Step

Also notice that the CurrentAccount constructor takes two parameters; the first parameter
initializes the account holder’s name (defined in BankAccount), and the second initializes the
overdraftLimit (defined in CurrentAccount).

4.	 Add a new C++ source file to the project named CurrentAccount.cpp.

5.	 Type the following code in the source file to implement the CurrentAccount class:

#include "stdafx.h"
#include "CurrentAccount.h"

CurrentAccount::CurrentAccount(String ^holder, double limit)
 : BankAccount(holder), overdraftLimit(limit)
{
}

void CurrentAccount::ChangeOverdraftLimit(double newLimit)
{
 overdraftLimit = newLimit;
}

double CurrentAccount::GetOverdraftLimit()
{
 return overdraftLimit;
}

The most important thing to note about this code is the CurrentAccount constructor. The
member initialization list includes the syntax BankAccount(holder). This calls the construc-
tor in the base class, BankAccount, to initialize inherited data members. If you take a look in
BankAccount.cpp, you’ll see that the BankAccount constructor requires a String^ parameter to
set the account holder’s name. The balance is always set to 0 initially.

Note  The derived-class constructor must call the base-class constructor by using the mem-
ber initialization list syntax. If you forget to call the base-class constructor, the compiler will
attempt to call a no-argument constructor in the base class on your behalf; if there isn’t a
no-argument constructor in the base class, you’ll get a compiler error.

6.	 Add a header file to the project named SavingsAccount.h.

7.	 Add the following declaration for the SavingsAccount class to the file:

#pragma once

#include "BankAccount.h"

ref class SavingsAccount : BankAccount
{
public:
	 SavingsAccount(String ^holder);
	 static void SetInterestRate(double rate);
	 static double GetInterestRate();

	 Chapter 8  Inheritance    129

private:
	 static double interestRate;
};

8.	 Add a source file to the project named SavingsAccount.cpp.

9.	 Add the following code to the file to implement the SavingsAccount class:

#include "stdafx.h"

#include "SavingsAccount.h"

SavingsAccount::SavingsAccount(String ^holder) : BankAccount(holder) { }

void SavingsAccount::SetInterestRate(double rate)
{
	 interestRate = rate;
}

double SavingsAccount::GetInterestRate()
{
	 return interestRate;
}

10.	 Build the application and fix any compiler errors.

Creating derived class objects

In this exercise, you will see how to create and use objects of a derived class.

1.	 Continue using the project from the previous exercise.

2.	 Open BigBank.cpp and add #includes for the CurrentAccount and SavingsAccount header files.

#include "CurrentAccount.h"
#include "SavingsAccount.h"

Note  There is no need to explicitly write #include “BankAccount.h” because this
header file is already included in CurrentAccount.h and SavingsAccount.h.

3.	 Delete the “Hello World” line from main. Add code to create a CurrentAccount object and
exercise it.

CurrentAccount acc("Me", 2000.0);
acc.Credit(100.0);

double balance = acc.GetBalance();
double overdraft = acc.GetOverdraftLimit();

Console::WriteLine("Balance: {0}", balance);
Console::WriteLine("Overdraft: {0}", overdraft);

130   Microsoft Visual C++/CLI Step by Step

You can see that the CurrentAccount object gives you access to the Credit and GetBalance mem-
ber functions from Account. It also gives you access to its own GetOverdraftLimit function.

4.	 Add code to main to create a SavingsAccount.

SavingsAccount::SetInterestRate(2.5);
SavingsAccount sacc("You");
double rate = sacc.GetInterestRate();

Console::WriteLine("Interest rate: {0}", rate);

5.	 Build and run the application.

You should see the interest rate printed, showing that you can access a static member through
either the class name or through an object.

6.	 Build and run the application.

You should see output similar to this:

Balance: 100
Overdraft: 2000
Interest Rate: 2.5

Concrete and abstract classes

When you define an inheritance hierarchy, the base class acts as a repository for the common mem-
ber functions and data members required by derived classes. However, the base class often doesn’t
represent a real object.

Consider the bank account example we’ve been developing in this chapter. When you walk into a
bank to open an account, you have to specify what type of account you want (checking account or
savings account). You can’t just open a “bank account.”

In similar fashion, when programming, you should prevent generic BankAccount objects from
being created. You should allow only derived classes such as CurrentAccount and SavingsAccount to
be instantiated. To accomplish this in C++/CLI, declare the BankAccount class as an abstract class, as
demonstrated in the following:

ref class BankAccount abstract
{
 // ... Class body, as before
};

Observe how the abstract modifier appears after the class name.

In this exercise, you will modify the BankAccount class as just described to make it an abstract class.
You will then write some code in the main function in the application to create and use CurrentAccount
and SavingsAccount objects.

	 Chapter 8  Inheritance    131

1.	 Continue using the project from the previous exercise.

2.	 Open BankAccount.h and change the BankAccount class definition by adding the abstract
keyword.

ref class BankAccount abstract
{
 ...
};

3.	 Open BigBank.cpp to edit the main function for the application.

4.	 Inside the main function, try to create a BankAccount object as follows:

BankAccount genericAccount("Fred");

IntelliSense flags an error, which confirms the fact that you cannot create instances of an
abstract class.

5.	 Delete the statement you created in Step 4.

Overriding member functions

When you define a base class, you must consider whether derived classes will need to override any
of your base-class member functions. For each member function in the base class, there are three
possibilities:

■■ The base-class function is suitable for all derived classes. Derived classes will never need to
override the member function with customized behavior. The Credit and GetBalance mem-
ber functions in BankAccount fit this scenario. These functions will work the same way for all
derived classes. Here’s an example:

ref class BankAccount abstract
{
public:
 void Credit(double amount); // This function cannot be overridden
 double GetBalance(); // Neither can this one
 ...
};

■■ The base-class function performs some task, but derived classes might need to override the
function to provide customized behavior. To make it possible to override a base-class func-
tion, you must declare the function by using the virtual keyword in the base-class definition,
as shown in this example:

ref class BankAccount abstract
{
public:
 virtual String ^ToString() override; // This function can be overridden
 ...
};

132   Microsoft Visual C++/CLI Step by Step

This function declaration uses both the virtual and override keywords. We have seen how
virtual indicates that a derived class can override this function. The override keyword must be
used when you are overriding a function from a base class; in this case, ToString is defined in
the ultimate base class, System::Object, and so we use override to show that we are intending
to override this function and haven’t just added a function that looks exactly the same.

If by some chance you want to add a function that looks like a base class function but does
not override it, you would use the new modifier:

// This function does not override ToString
virtual String ^ToString() new;

■■ The base-class function specifies some operation that is required by all derived classes, but
each derived class needs to perform the operation in a significantly different way. There is no
sensible common behavior you can define in the base class. To do this, you declare the base-
class member function as abstract. C++ calls these pure virtual functions.

There are two ways to denote a pure virtual function. The first comes from standard C++ and
involves putting “= 0” at the end of the function declaration. The second way, introduced by
C++/CLI, is to add the abstract keyword. Here’s an example:

ref class BankAccount abstract
{
public:
 // Declare a pure virtual function using standard C++ syntax
 virtual void Debit(double amount) = 0;

 // Declare a pure virtual function using C++/CLI syntax
 virtual void Debit(double amount) abstract;
 ...
};

Note  Including a pure virtual function in a class means that it must be abstract, although
the opposite is not necessarily true: a class can be abstract without having any pure virtual
functions. If a derived class does not implement the function, it too must be abstract.

In this exercise, you will define a ToString member function in the BankAccount class. You will
declare this function as virtual to give derived classes the opportunity to override the function if
they want to. You will also modify the way in which debits are handled so that derived classes decide
whether a withdrawal can be made.

1.	 Continue using the project from the previous exercise.

	 Chapter 8  Inheritance    133

2.	 Open BankAccount.h and add the following public function declarations to the BankAccount
class:

// Derived classes can override this function
virtual String ^ToString() override;
// Derived classes must override this function
// You can use '=0' instead of 'abstract'
virtual bool CanDebit(double amount) abstract;

3.	 Open BankAccount.cpp and implement the ToString function as follows:

String ^BankAccount::ToString()
{
 String ^result = gcnew String("Account holder: ");
 result = String::Concat(result, accountHolder);
 result = String::Concat(result, ", Balance: ");
 result = String::Concat(result, balance.ToString());
 return result;
}

Observe the use of the String::Concat function, which is used for joining strings together.

4.	 Modify the Debit member function as follows:

bool BankAccount::Debit(double amount)
{
 if (CanDebit(amount))
 {
 balance -= amount;
 return true;
 }
 else
 {
 return false;
 }
}

Notice that Debit now calls CanDebit to verify that the debit is allowed. CanDebit isn’t imple-
mented in BankAccount, but all derived classes are obliged to provide this function. At run
time, the correct version of CanDebit is called depending on the type of bank account being
used for the debit operation—polymorphism in action! We have also changed the return type
of Debit so that calling code can determine whether the debit worked.

5.	 Change the prototype for Debit in BankAccount.h so that it returns a bool.

6.	 Open CurrentAccount.h and add the following public function declarations to the Current
Account class:

// Choose to override ToString
virtual String ^ToString() override;
// Have to override CanDebit
virtual bool CanDebit(double amount) override;

134   Microsoft Visual C++/CLI Step by Step

Notice the use of the override keyword. This instructs the compiler that you are intending to
override a function from the base class and haven’t just added a function that happens to look
exactly the same.

7.	 Open CurrentAccount.cpp and implement the ToString function as follows:

String ^CurrentAccount::ToString()
{
 String ^result = BankAccount::ToString();
 result = String::Concat(result, ", Overdraft Limit: ");
 result = String::Concat(result, overdraftLimit.ToString());
 return result;
}

The BankAccount::ToString() syntax calls the ToString function in the base class (BankAccount).
This call returns a string containing the account holder’s name and balance. We concatenate
the overdraftLimit value to this string and return it.

8.	 Still in CurrentAccount.cpp, implement the CanDebit function as follows:

bool CurrentAccount::CanDebit(double amount)
{
 return (amount <= GetBalance() + overdraftLimit);
}

There are two things to note about this code. First, we need to call the GetBalance function to
get the current balance. Just because we inherit from BankAccount doesn’t mean that we can
access its private balance member.

Second, notice the way in which the return statement is written, returning the result of the
expression directly. We could have used an if statement to check the condition and return true
or false, but this code is shorter while being no less readable, and that is something that C++
coders like.

9.	 Open SavingsAccount.h and add the following public function declaration to the Savings
Account class:

virtual bool CanDebit(double amount) override;

You are obliged to override CanDebit because it’s a pure virtual function. However, you do not
have to override ToString, because the base class (BankAccount) provides a default implemen-
tation of this function. The SavingsAccount class chooses not to override ToString.

10.	 Open SavingsAccount.cpp and implement the CanDebit function as follows:

bool SavingsAccount::CanDebit(double amount)
{
 return (amount <= GetBalance() / 10);
}

This function makes it possible for the user to withdraw one-tenth of the current balance.

	 Chapter 8  Inheritance    135

11.	 Open BigBank.cpp and replace the existing code in the main function with the following:

Console::WriteLine("Testing the CurrentAccount");
CurrentAccount current("Jane", 100);
current.Credit(500);

// Should be accepted
if (current.Debit(550) == true)
{
	 Console::WriteLine("Debit(550) OK");
}
else
{
	 Console::WriteLine("Debit(550) failed");
}

// Should be declined
if (current.Debit(100) == true)
{
	 Console::WriteLine("Debit(100) OK");
}
else
{
	 Console::WriteLine("Debit(100) failed");
}

Console::WriteLine(current.ToString());

Console::WriteLine("\nTesting the SavingsAccount");
SavingsAccount savings("Fred");
savings.Credit(500);

// Should be accepted
if (savings.Debit(50) == true)
{
	 Console::WriteLine("Debit(50) OK");
}
else
{
	 Console::WriteLine("Debit(50) failed");
}

// Should be declined
if (savings.Debit(46) == true)
{
	 Console::WriteLine("Debit(46) OK");
}
else
{
	 Console::WriteLine("Debit(46) failed");
}

Console::WriteLine(savings.ToString());

return 0;

136   Microsoft Visual C++/CLI Step by Step

12.	 Build and run the application. Check that the output is what you expect.

13.	 Create a breakpoint on the first statement in the main function and then start the application
in the debugger. Step through the application one statement at a time, stepping into each
function to see which version is called during execution.

Protected access

You have used two access levels for class members so far: private and public. You know that private
members cannot be used outside the defining class, whereas public members can be used by anyone.
Inheritance, however, introduces a relationship between two classes, and there is a need for an access
level that grants access to derived classes. The protected access level is less restrictive than private but
more restrictive than public.

Any members that are defined as protected can be used in the base class, and in any class that derives
from it.

Tip  You should only make member functions protected, not data members. The data be-
longing to a class is the responsibility of that class, and it should not allow direct modifica-
tion by derived classes.

In this example, you will add a protected member function to the BankAccount class. Suppose that
BankAccount has a RoutingInstructions function that details how a given size of debit or credit should
be handled for a particular account. This function is not to be accessed by users of the class but might
be of use to derived classes.

1.	 Continue using the project from the previous exercise.

2.	 Open BankAccount.h and add the following protected function declaration to the BankAccount
class:

protected:
 String ^RoutingInstructions(double amount);

Note  The order in which you specify the public, private, and protected sections of a
class declaration does not matter, although many people will put the public section
first because that is the most important section from the point of view of users of
the class.

3.	 Open BankAccount.cpp and add the definition of RoutingInstructions.

String ^BankAccount::RoutingInstructions(double amount)
{
 return "Some string…";
}

	 Chapter 8  Inheritance    137

4.	 Open CurrentAccount.cpp and modify the CanDebit function so that it calls RoutingInstructions.
You should not see any warnings from the compiler, because CurrentAccount is allowed to call
this function.

bool CurrentAccount::CanDebit(double amount)
{
 String ^details = RoutingInstructions(amount);
 return (amount <= GetBalance() + overdraftLimit);
}

5.	 Open BigBank.cpp and try adding a call to RoutingInstructions on either the SavingsAccount or
CurrentAccount objects.

IntelliSense flags an error because you are not allowed to call this function from an unrelated
class. If you build the project, you will get error C3767 (‘BankAccount::RoutingInstructions’:
candidate function(s) not accessible)

Defining sealed classes

In C++/CLI, you can define a class as sealed, which means that the class cannot be used as a base class.
Defining a class as sealed is useful if it performs operations that you don’t want customized in derived
classes, but it is also useful in another, less obvious way. If a class is sealed, the compiler knows that
it will not have any derived classes. Because this means that there will be no calls to virtual functions,
the compiler might be able to generate more efficient code.

To mark a class as sealed, use the sealed keyword in the class definition as follows:

ref class MyClass sealed
{
 // ... Class body, as before
};

Abstract and sealed
It might appear at first sight that abstract and sealed are opposites: one means that a class has to have
derived classes to be useful, whereas the other means that you can’t derive classes. It is, however, pos-
sible to use abstract and sealed together on a class.

Suppose that you have a class that only contains static (class-level) members. It would make sense
to say that you do not want objects of this type, because there are no object-level functions. Making
the class abstract prevents instantiation. In addition, you might want to prevent anyone from adding
extra functions to your class, which sealed does.

Note  You can specify the sealed and abstract modifiers in any order.

138   Microsoft Visual C++/CLI Step by Step

Defining and using interfaces

Interfaces are an important programming construct in .NET; therefore, you need to be able to use
them in C++/CLI. You have already learned about pure virtual functions, which are specified in a base
class but implemented by a derived class. Imagine that you have a class that only contains pure virtual
functions, such as the following:

ref class XmlWriter
{
public:
 virtual void ReadFromXmlFile(String ^filename) = 0;
 virtual void WriteToXmlFile(String ^filename) = 0;
};

This class specifies how to convert data to and from XML, and it is implemented by derived classes
to suit their particular data. You could use the following:

ref class MyData : XmlWriter
{
public:
 void ReadFromXmlFile(String ^filename) override
 {
 // Read my data
 }

 void WriteToXmlFile(String ^filename) override
 {
 // Write my data
 }
};

An interface is similar, and you could rewrite the XmlWriter class as follows:

interface class IXmlWriter
{
 void ReadFromXmlFile(String ^filename);
 void WriteToXmlFile(String ^filename);
};

The definition of the derived class also needs to be changed. You need to specify the interface
name, and declare the functions as virtual.

ref class MyData : IXmlWriter
{
public:
 virtual void ReadFromXmlFile(String ^filename)
 {
 // Read my data
 }

 virtual void WriteToXmlFile(String ^filename)
 {
 // Write my data
 }
};

	 Chapter 8  Inheritance    139

You can see that you inherit from an interface in the same way that you inherit from a class. How-
ever, there are a number of differences between a class and an interface:

■■ A class can contain implementation and data members; an interface cannot.

■■ All members of an interface are public and abstract by definition.

■■ Interface names should start with an “I” (capital i) by convention.

■■ A class can only inherit from one base class, but it can implement as many interfaces as it
wants.

If you have used standard C++, you might know that a class can inherit from many base classes.
This feature is called multiple inheritance. .NET only allows you to inherit from one base class, but
because you can implement as many interfaces as necessary, you can get the benefits of multiple
inheritance.

Interfaces are very important in .NET, not least of which because they are cross-language. You can
define an interface in C++ and implement it in C#. More important than that, they provide a way to
specify a contract, which one class implements, and another uses. Neither class might have knowl-
edge of the other, but they can communicate because they both know about and use the interface
contract. You will see many examples of interfaces as you progress through the rest of the book.

Quick reference

To Do this

Define an abstract base class. Use the abstract keyword in the class definition. For ex-
ample:

ref class MyBase abstract
{
...
};

Define a derived class. In the derived-class definition, use a colon followed by
the name of the base class. For example:

ref class MyDerived : MyBase
{
 ...
};

Construct derived objects. In the derived-class constructor, use a member initializa-
tion list to call the base-class constructor. For example:

MyDerived::MyDerived(int bdata, int ddata)
 : MyBase(bdata), derivedData(ddata)
{
 ...
}

140   Microsoft Visual C++/CLI Step by Step

To Do this

Enable derived classes to access members in the base
class while denying access to unrelated classes.

Declare the members as protected in the base class. For
example:

ref class MyBase abstract
{
protected:
 void functionVisibleToDerivedClass;
 ...
};

Define overridable member functions in the base class. Declare the member functions as virtual in the base class.
For example:

ref class MyBase abstract
{
protected:
 virtual void myOverridableFunction();
 ...
};

Specify base-class member functions that must be over-
ridden by derived classes.

Declare the member functions as virtual in the base class.
After the closing parenthesis, append = 0 or abstract. For
example:

ref class MyBase abstract
{
protected:
 virtual void myMustBeOverridden() = 0;
 ...
};

To prevent a class being used as a base class. Use the sealed keyword in the class definition. For ex-
ample:

ref class MySealedClass sealed
{
 ...
};

Define an interface. Use the interface class keyword, and start the interface
name with “I”. Do not provide any bodies for the func-
tions you define. For example:

interface class IMyInterface {
 void function1(int n);
 int function2(double d);
};

Implement an interface. Use the same syntax as for inheritance. Implement all the
required functions in your class. For example:

ref class MyImplementingClass
 : IMyInterface
{ public:
 void function1(int n);
 int function2(double d);

 // Other members, as needed
 ...
};

		 141

PART II

Microsoft .NET
programming basics

CHAPTER 9	 Value types . 143

CHAPTER 10	 Operator overloading . 159

CHAPTER 11	 Exception handling . 175

CHAPTER 12	 Arrays and collections . 197

CHAPTER 13	 Properties . 229

CHAPTER 14	 Delegates and events . 245

CHAPTER 15	 The .NET Framework class library 263

		 143

C H A P T E R 9

Value types

After completing this chapter, you will be able to:

■■ Distinguish between reference and value types.

■■ Work with structures.

■■ Work with enumerations.

In preceding chapters, you learned about object-oriented programming and how to apply it within
the Microsoft .NET Framework. You’ve seen how many data types within .NET are represented by

classes, and you’ve learned how to create and use your own classes. However, not every data type in
.NET is a class, and now you’re going to meet the other fundamental building block of .NET types—
the value type.

In this chapter, you’ll discover what value types are and how they differ from the reference types
you’ve already met. You will also learn about two important value types, structures and enumerations,
which will be useful in your own code.

Reference types and value types

Let’s summarize what you’ve learned about classes so far. Classes are known as reference types be-
cause you always access objects by using reference variables, known as handles. Consider the follow-
ing line of code:

MyClass ^pc = gcnew MyClass();

In this example, pc is a reference variable by which we can refer to the MyClass object created by
the gcnew operator. Accessing objects by using references in this way makes it possible for the .NET
garbage-collection mechanism to reclaim the resources used by an object when there are no longer
any references to it. This feature of .NET makes for efficient memory usage and means that you won’t
suffer from one of the traditional problems of C++ applications: memory leaks.

144   Microsoft Visual C++/CLI Step by Step

The second thing you’ve learned about classes is that they consist of data members and member
functions. Data members represent the state of the object, and it’s good practice to make them pri-
vate to the class. Member functions provide the behavior of the object, and they use the data mem-
bers to determine how to respond. All operations on objects are done by calling member functions,
using the -> operator, as in the following line of code:

result = pc->DoOperation();

You also saw how with C++/CLI, you can use stack semantics to create objects, making it look as if
they are traditional C++ local variables, and how you can use the dot operator (.) to access members,
as demonstrated here:

MyClass m;
result = m.DoOperation();

In fact, they work in exactly the same way as objects you create by using gcnew.

The need for value types
So, how are value types different from reference types, and why do we need them? As the name
“value type” implies, they have been designed to hold values, such as integers, floating-point num-
bers, Booleans, and characters. Anything that is basically a wrapper around a simple value—and is
less than about 16 bytes in size—is a good candidate for a value type.

We need value types because we want simple values to be used as efficiently as possible, but we
also want them to be usable as objects. Using values as objects is a problem with object-oriented
languages because if basic types are represented as objects, all operations (such as addition and
multiplication of integers) must be done by calling functions, which isn’t efficient at all. On the other
hand, if basic types are not represented as objects, operations on them can be very efficient, but we
can’t use them where objects are needed.

.NET gets around this problem with value types, which are represented and used as efficiently as
built-in types, but which can also be used as objects when necessary. You don’t need to know this is
happening most of the time. This process is called boxing, and it is discussed in Chapter 22, “Working
with unmanaged code.”

The following table summarizes the most common value types provided by the .NET Framework.

Value type Description C++/CLI equivalent

Byte An 8-bit unsigned integer unsigned char

SByte An 8-bit signed integer char

Int16 A 16-bit signed integer short

Int32 A 32-bit signed integer int or long

Int64 A 64-bit signed integer __int64 or long long

UInt16 A 16-bit unsigned integer unsigned short

UInt32 A 32-bit unsigned integer unsigned int or unsigned long

	 Chapter 9  Value types    145

Value type Description C++/CLI equivalent

UInt64 A 64-bit unsigned integer unsigned __int64 or unsigned long
long

Single A single-precision, 32-bit floating-
point number

float

Double A double-precision, 64-bit floating-
point number

double

Boolean A Boolean value bool

Char A 16-bit Unicode character wchar_t

IntPtr A signed integer used to represent
pointers

No built-in type

UIntPtr An unsigned integer used to repre-
sent pointers

No built-in type

Note that the C++ equivalents are simply names for the types—aliases, if you like— that fit better
with C++ syntax. Although it’s more natural to use the native language equivalents, you could use
the underlying .NET types, instead, which means that the following two lines of code mean exactly the
same thing:

int n = 0; // use managed C++ type
Int32 n = 0; // use .NET native type

Properties of value types
A value type is a type that inherits from the System::ValueType class. Value types have several special
properties:

■■ Value types are stored on the stack (unlike references, which are stored on the run-time heap).

■■ Value types are not garbage collected.

■■ Instances of value types are always accessed directly (unlike reference types, which are ac-
cessed through references). Direct access means that you don’t use the gcnew operator when
creating instances.

■■ Copying value types copies the value, rather than the reference.

■■ Value types can’t be used as base classes for inheritance.

As you can see, value types behave just like the standard built-in types such as int and char, and
they are just as efficient to use. As mentioned in the previous section, the main difference between
value types and built-in types is that value types can also be treated as objects when necessary.

Although you can’t add new basic types to the language, you can create your own value types in
the form of structures and enumerations. We’ll explore these in the rest of this chapter.

146   Microsoft Visual C++/CLI Step by Step

Structures

Structures (commonly referred to as structs) provide a way to create the compound data or record
types that you might have come across in other programming languages. Similar to classes, structures
can contain member functions, data members, and other .NET features that you’ll learn about in
later chapters, but there’s one important difference: structures are value types, not reference types.
Therefore, if you have a value type that needs to have some internal structure, such as a point with
X and Y coordinates, you can implement it by using a struct.

Creating and using a simple struct
The following exercise shows how to create a structure representing a point with X and Y coordinates,
how to create instances of the structure, and how to use the instances in code.

Note  Both standard C++ and C++/CLI use the struct keyword to define structures. This
chapter discusses the use of .NET (managed) structs rather than the traditional struct.
Declaring .NET structures has the advantage of working within the .NET world and also
makes it possible for you to exchange structures with other .NET languages.

1.	 Start Microsoft Visual Studio 2012 and create a new CLR Console Application project named
Structs.

2.	 At the top of the Structs.cpp file, immediately below the using namespace System; line, add the
following structure definition:

// The Point structure definition
value struct Point
{
 int x, y;
};

The value and struct keywords start a structure definition, and you’ll notice that structures
look very similar to classes in the way that they are defined. The body of the structure is
enclosed in braces and finishes with a semicolon, and the public and private keywords can be
used to set the access level for structure members.

Notice the use of the value keyword here. This keyword instructs the compiler that this is a
.NET value type and not a traditional C++ structure. It’s important that you remember to use
value when defining your structures.

This simple structure represents a point on a graph, so it has two integer data members repre-
senting the X and Y coordinates.

	 Chapter 9  Value types    147

Note  In standard C++ the only difference between a struct and a class is in the de-
fault access level. Members of a class are private by default, whereas members of a
struct are public, unless marked otherwise. This has been carried over into C++/CLI,
so there is no need to make structure members public.

3.	 To create and initialize a Point object, add the following lines to the main function of your
application:

// Create a Point
Point p1;

// Initialize its members
p1.x = 10;
p1.y = 20;

Notice that the code doesn’t use the gcnew operator. The gcnew operator is used to create
references to objects, and value types aren’t accessed by reference. Instead, a Point has been
created on the program stack, and you access it directly as p1. Because the data members are
public at this point, you can access them by using the familiar dot notation.

4.	 Add two lines to print out the value of one of the structure members, like this:

Console::WriteLine("p1.x is {0}", p1.x);

5.	 Compile and run the application.

At this point, you should see the output “p1.x is 10”.

Investigating the structure
In this exercise, you will run the application under control of the debugger so that you can look at the
structure of the value type you have created.

1.	 If you closed the Structs project, open it again and open the source file Structs.cpp.

2.	 Insert a debug breakpoint by clicking in the gray border to the left of the code. Click next to
the declaration of p1.

A red dot appears in the border, as illustrated in the screen shot that follows.

148   Microsoft Visual C++/CLI Step by Step

3.	 Press F5 to start the debugging session.

After the application loads, it executes and stops at the breakpoint. You can now use the
Locals pane at the bottom of the window to look at the structure of the Point type.

You should see an entry for the variable p1. Any type that has internal structure—such as
Point—is indicated by a plus sign (+) to the left of the variable name.

4.	 Click the plus sign to expand the structure.

The Locals pane opens, appearing similar to the one shown in the following screen shot:

You can see that p1 has three entries below it. The first shows that it’s derived from
System::ValueType, which is in turn derived from System::Object. The other two are the x and
y members, which are both 32-bit integers. At this point in in the code, the structure hasn’t
been fully initialized, so they don’t contain sensible values.

5.	 Press F10 three times to initialize p1 and execute the next two assignment statements.

This action results in p1 being initialized, and you will see the values of x and y change to re-
flect the values you set. The values also change from black to red in the Locals pane, showing
that they were changed in the previous execution step.

	 Chapter 9  Value types    149

6.	 Continue pressing F10 to single-step through the code, examining the changes that occur to
p1 as you execute each line. When you’re done, discontinue debugging by clicking the Stop
Debugging button on the toolbar (the dark-red square), clicking the Stop Debugging com-
mand on the Debug menu, or pressing Shift+F5.

The differences between structures and classes
Structures and classes have several fundamental differences:

■■ You can’t initialize members in a structure definition. If you need to provide initialization for a
structure type, you must provide a constructor.

■■ You can’t override the default no-argument constructor for a structure. This is because the
runtime automatically sets all members of a structure to their default values: 0 for numeric
types, and false for Booleans.

■■ Structures can’t have destructors or finalizers, because they aren’t garbage collected.

■■ Inheritance isn’t applicable to structures, so they can’t inherit from anything else and you can’t
use them as a base class.

■■ Structures can implement interfaces.

Implementing constructors for a structure
In this next exercise, you will add a constructor to the Point structure so that instances can be initial-
ized on creation.

1.	 Continue using the project from the previous exercise.

2.	 Add a constructor to your Point structure so that the code looks like this:

value struct Point
{
 int x, y;
 Point(int xVal, int yVal) { x = xVal; y = yVal; }
}

The constructor takes two int values and uses them to initialize the x and y data members.
In this case, the arguments are simply being copied into the data members, but it would be
simple to add some checking to ensure that the data passed in is correct.

Note  Anyone who has used C++ before will be familiar with the use of default argu-
ments on constructors. You can’t use default arguments on managed types in C++/
CLI, so you need to provide an explicit default constructor.

150   Microsoft Visual C++/CLI Step by Step

3.	 You can now add extra code to your main function to create initialized Points.

Point p2(10,20); // use the second constructor to set x
 // to 10 and y to 20
Console::WriteLine("p2.x is {0}", p2.x);

4.	 Build and run the application. Check that the result is what you expect.

Using one structure within another
It’s possible—and often useful—to use one structure within another. Imagine that you have a struc-
ture named Person for describing a person. The structure contains the name and date of birth, among
other data. You could use separate fields for each item, but you could also make the date entries into
another structure and refer to it inside Person. Here’s an example:

// A Date structure containing day, month and year
value struct Date
{
 int dd, mm, yyyy;
};

// A Person structure containing a Date member
value struct Person
{
 String ^name;
 Date DOB;
};

You can see how the Date structure contains three members representing the day, month, and
year. This structure is quite general, so you could use it in other applications. The Person structure
contains a String reference to hold the name, and a Date object to hold the date of birth.

In this exercise, you’ll use these two classes to investigate how structure data members work.

1.	 Create a new CLR Console Application project named Person.

2.	 At the top of the file, immediately below the using namespace System; line, add the structure
definitions for Date and Person.

3.	 In the main function, create a Person object. Remember that you don’t use gcnew, because
structures are value types.

// Create a Person
Person p1;

4.	 Fill in the values for the fields.

// Fill in the name
p1.name = "Fred";
p1.DOB.dd = 10;
p1.DOB.mm = 3;
p1.DOB.yyyy = 1960;

	 Chapter 9  Value types    151

Notice how structure data members are accessed. Because the DOB member has members of
its own, you simply extend the dot notation to another level to access its members. You can
continue this nesting to as many levels as you like, although it is unusual to go much deeper
than you’ve done here.

5.	 You can also initialize all the members of Person in one line. Remove the four initialization
lines you entered in step 4 and then change the line where you create the Person.

Person p1 = {"Fred", {10, 3, 1960}};

Can you see what is going on here? The data in the braces—called an aggregate initializer—
provides data for the initialization of the structure. The Person structure contains two items: a
String and a Date. Therefore, there are two items in the list. Because Date has members of its
own, its entries are also enclosed in braces.

Note  Use of an aggregate initializer is an alternative to using a constructor and can
be handy where there’s no checking to be done on the data.

6.	 If you decide that the date of birth is wrong, you can simply create a new Date and copy it
into the Person object, such as in the following:

// Create a new Date
Date newDOB = {1, 4, 1955};
p1.DOB = newDOB;

The new Date takes the values specified in the initializer and then copies it into the Person
object, overwriting the values in the Date that's already there.

7.	 You can see the configuration of the Person structure by running the application under control
of the debugger. Place a breakpoint in the application at the line where p1 is created by click-
ing in the gray margin to the left of the code.

8.	 Press F5 to start the debugging session.

After the application loads, it executes and stops at the breakpoint. You can now use the Lo-
cals pane at the bottom of the window to look at the structure of the Person type.

9.	 Click the plus sign to the left of p1 in the Locals pane to expand the structure of Person.

Observe that it has Name and DOB members, and if you click the plus sign to the left of DOB,
you can expand its structure, as well.

10.	 Press F10 to step through the code until all the members are initialized.

The members of p1 display in red as each value changes.

152   Microsoft Visual C++/CLI Step by Step

11.	 When you’ve finished, press Shift+F5 to stop debugging or, on the toolbar, click the Stop
Debugging button.

Finally, let’s consider nested structure definitions. If you don’t want to use the Date structure any-
where except inside your Person structure, you can define Date inside Person, as shown here:

// A Person structure containing a Date structure
value struct Person
{
 String ^name;
 value struct Date
 {
 int dd, mm, yyyy;
 };
 Date DOB;
};

You create Person variables and access their members exactly the same as before. The big differ-
ence is that the Date structure is now a part of Person, so you can’t create Date variables on their own.

Copying structures
Because structures are value types, copying them makes a copy of the values they contain. Contrast
this behavior with classes, for which copying objects results in references being copied.

Person p1;
Person p2;
...
p2 = p1; // p1's data is copied into p2
MyClass m1;
MyClass m2;
...
m2 = m1; // m2 and m1 now refer to the same object.
 // No data is copied.

Note  You can’t use a reference type as a member of a structure, because structures aren’t
garbage-collected; a reference member would have to take part in garbage collection.

	 Chapter 9  Value types    153

Enumerations

An enumeration (commonly referred to as enum) is a set of named integer constants. Enumerations
are especially suitable for representing types that can take one of a set of fixed values such as the
days of the week or the months of the year. Enumerations are value types, and they derive from
the abstract System::Enum class, which in turn derives from System::ValueType.

Creating and using an enumeration
In the following exercise, you will create an enumeration to hold values representing the days of the
week and then use it in an application.

1.	 Create a new CLR Console Application project named Enums.

2.	 At the top of the Enums.cpp file, immediately below the using namespace System; line, add the
following structure definition:

// The Weekday enum definition
public enum class WeekDay
{
 Monday, Tuesday, Wednesday, Thursday, Friday,
 Saturday, Sunday
};

The enum class keywords start an enumeration definition, and you’ll notice that, once again,
enums are defined similarly to classes. The body of the enumeration is enclosed in braces and
finishes with a semicolon. The use of the enum and class keywords indicates to the compiler
that this is a value type and not a traditional C++ enumeration.

The enumeration itself consists of a comma-separated set of names, each of which represents
an integer constant.

3.	 You create enumeration variables the same as you create any other type. To create and initial-
ize a WeekDay object, add the following lines to the main function of your application:

// Create a WeekDay
WeekDay w = WeekDay::Monday;

As with structures, the code doesn’t use the gcnew operator. An enumeration variable of type
WeekDay has been created on the program stack, and you access it directly as w. Notice how
the enumeration variable is initialized with one of the members of the enumeration. This syn-
tax is how you initialize enumeration variables and how you can change their values later on.

Note  In C++/CLI, unlike in standard C++, enumeration members must be quali-
fied with the name of their type. It is an error to just say Monday rather than
WeekDay::Monday.

154   Microsoft Visual C++/CLI Step by Step

4.	 Try printing out the value of the WeekDay object like this:

Console::WriteLine("Value of w is {0}", (int)w);

The value 0 should be printed. Each of the named constants making up the enumeration
represents an integer value. By default, these values start from 0 and increase by one for each
subsequent member of the enumeration. You can test this output by changing the value that
you initially assigned to w, for example, WeekDay::Saturday. When you run the code again, the
value 5 should print.

You must cast the enumeration to an int in order to be able to print it; you will get an error if
you try to print the enumeration without casting it.

5.	 It would be good to be able to print out the symbol associated with the enumeration as well
as its numeric value. You can do this using the Format member of the Enum base class, as in
the following example:

String ^s = Enum::Format(WeekDay::typeid, w, "G");
Console::WriteLine("The day is {0}", s);

Format needs to be informed as to the type of the enumeration, which you do it by using
Enum::typeid and the value itself. The “G” indicates the format for the conversion: this is gen-
eral format, which means a string.

Note  Ensure that you qualify your enumeration with either public or private. If you don’t,
you will get an error (C2664) when you try to use Enum::Format. This is because the new
C++ standard (C++11, which this version of Microsoft C++ supports) has a new enumeration
type; if the compiler does not see public or private on an enumeration declaration, it as-
sumes that you have declared a C++11 enumeration.

More about enumerations
Even though the value given to an enumeration is an integer, there’s no implicit conversion between
enumerations and integers. If you consider the following lines of code, you’ll understand why:

//** This code won't compile! **//
// '1' would mean Tuesday
w = 1;
// What would '8' mean?
w = 8;

If converting between integers and enumerations were allowed, it would be possible to put invalid
values into the enumeration. If you do want to convert between integers and enumeration values, you
need to use an explicit cast to inform the compiler as to what you want to do, such as in the following
example:

int day = static_cast<int>(w);

	 Chapter 9  Value types    155

You can also use a cast to go the other way, from integer to enumeration, but that isn’t good
practice.

You don’t have to rely on the default numeric values that are assigned to the enumeration mem-
bers. Suppose that you want the integer equivalents of the weekdays to range from 1 through 7
instead of 0 through 6; simply assign 1 to the Monday member, as shown here:

public enum class WeekDay
{
 Monday = 1, Tuesday, Wednesday, Thursday, Friday,
 Saturday, Sunday
};

The enumeration now starts with 1, and because you haven’t given any other values for the re-
maining members, they are numbered 2 through 7.

If you want, you can give a completely discontinuous series of values for the enumeration mem-
bers, as in this example:

public enum class StatusCodes
{
 OK=0, FileNotFound=2, AccessDenied=5, InvalidHandle=6,
 OutOfMemory=8
};

Using enumerations in applications
In this exercise, you’ll see how to use an enumeration to control application execution by using it in a
switch statement.

1.	 Continue using the project from the previous exercise. If you’ve closed it, on the File menu,
click Open Solution to open the project again.

2.	 After the WriteLine statements, add the following switch statement code:

// Switch on the weekday
switch(w)
{
case WeekDay::Monday:
 Console::WriteLine("It's a Monday!");
 break;
case WeekDay::Tuesday:
 Console::WriteLine("It's a Tuesday!");
 break;
case WeekDay::Wednesday:
 Console::WriteLine("It's a Wednesday!");
 break;
default:
 Console::WriteLine("It's some other day...");
}

156   Microsoft Visual C++/CLI Step by Step

You are allowed to use an enumeration variable as a switch control variable because it’s basically
an integer. Likewise, you can use the names of enumeration members as switch case labels because
they’re also integers. The example code has cases for Monday through Wednesday; everything else is
handled by the default case. Remember to put the break statements in after the code for each case,
or the application won’t behave as you expect.

Using memory efficiently
By default, an enum is an int, and therefore, enumerations are 32 bits in size, which gives you a range
of values of –2,147,483,648 through 2,147,483,647. If you’re going to use only small values for enumer-
ation members, memory will be wasted if each variable takes up 32 bits. For this reason, it’s possible
to base an enumeration on any integer type. In the case of our WeekDay example, all our values can
quite happily fit into 1 byte. Thus, you could base the enum on a char, as shown here:

// WeekDay variables are one byte in size
public enum class WeekDay : char
{
 Monday = 1, Tuesday, Wednesday, Thursday, Friday,
 Saturday, Sunday
};

Quick reference

To Do this

Create a structure. Use value struct, followed by the name of the structure
and the body in braces, followed by a semicolon. For
example:

value struct Point3D
{
 int x, y, z;
};

Initialize structure members. Create a constructor, which is a function that has the
same name as the structure. For example:

value struct Point3D
{
 int x, y, z;
 Point3D(int xVal, int yVal, int zVal)
 {
 x=xVal;
 y=yVal;
 z=zVal;
 }
};

You can also use an aggregate initializer:

Point3D p1 = { 10, 20, 30 };

Access structure members. Use the dot notation. For example:

p1.x = 10;
myPerson.DOB.dd = 20;

	 Chapter 9  Value types    157

To Do this

Create an enumeration. Use enum class, followed by the name of the enumera-
tion and the body in braces, followed by a semicolon. For
example:

enum class Seasons
{
 Spring, Summer, Autumn, Winter
};

Control the values used for enumeration members. Assign values to the members in the enumeration defini-
tion. For example:

enum class Seasons
{
 Spring=1, Summer, Autumn, Winter
};

Base enumerations on other integer types. Put a colon and the type name after the enumeration
name. For example:

enum class Seasons : char
{
 Spring, Summer, Autumn, Winter
};

		 159

C H A P T E R 1 0

Operator overloading

After completing this chapter, you will be able to:

■■ Describe what operator overloading is.

■■ Decide which classes should support operator overloading.

■■ Recognize what you can and can’t overload.

■■ Describe guidelines for providing overloaded operators.

■■ Explain how to implement operator overloads.

You’ve already seen how to construct classes and structures, provide member functions in your
types, and use these functions in applications. In this chapter, you’re going to find out about a

special category of member functions called overloaded operator functions, with which you can add
extra functionality so that your types can be used more naturally and intuitively.

Note  If you’ve encountered operator overloading in C++ before, you will find that there
are many similarities when using C++/CLI. There are also a number of differences, so read
carefully!

What is operator overloading?

Chapter 3, “Variables and operators,” introduces the operators provided by the C++ language. The
problem is that those operators work only with the built-in types, and now, you’re starting to use
classes and structures to define your own data types. This means that if you want to add or compare
objects of types that you’ve created, you can’t use the + and == operators because the compiler
doesn’t know how to apply them to your objects.

160   Microsoft Visual C++/CLI Step by Step

Operator overloading is a C++ feature by which you can define operators to work with your types,
which can often lead to a more natural style of programming, so instead of writing

object3 = object1.Add(object2);

you can write this:

object3 = object1 + object2;

What types need overloaded operators?
In general, overloaded operators are needed by classes that wrap simple values. Types can be split
into three broad classifications, as shown in the following table.

Classification Defining characteristics Examples

Values Values wrap data; if two objects con-
tain the same data, those objects are
identical.

String, Matrix, Date, and Time

Services Services can have little or no state
data. They provide services through
their member functions.

CreditCardCheck and AddressLookup

Entities Entities have an identity that is
unique for each object.

BankAccount (identified by account
number) and Person (identified by
Social Security number)

Values are the classes for which you’ll most often find yourself implementing overloaded operators.
You can imagine wanting to implement +, >, ==, and other operators for types such as Date and
String, but it’s harder to see when you might want them for the other classifications. Service types,
which have little or no state, don’t tend to need operators: What would comparing two AddressLookup
objects mean? Entity types might have some operators, but their meaning might not be intuitive. You
could use == to check two BankAccounts for equality, but what would that mean? There’s more on
equality later on in this chapter; first, let’s move on to see how operator overloading works.

What can you overload?
You learned about the rich set of operators that C++ supports in Chapter 3. You can overload many
of these, but there are some restrictions. Traditional C++ won’t let you overload several of the more
esoteric operators, such as sizeof and the member-of dot operator. C++/CLI extends the list and adds
a number of other C++ operators that can’t be overloaded, including ->, (), and [].

The main reason for this restriction is that the Common Language Specification (CLS) is designed
for use across languages, and as such, it will support a set of operators that are useful to all Microsoft
.NET languages rather than support operators that are specific to C++. You’ll see later exactly which
operators .NET lets you overload.

	 Chapter 10  Operator overloading    161

Rules of overloading
Several rules apply when overloading operators. The problem is that you can implement operators to
mean whatever you like, so some rules are needed to impose a few limits and to prevent creating an
impossible job for the compiler.

■■ You cannot define any new operators. Even if you think that %% would make a neat new
operator, you can’t add it.

■■ You can’t change the arity, the number of operands taken by an operator. You might think
it would be really useful to create a unary / operator, but the division operator always has to
have two operands.

■■ You can’t change the precedence or associativity of operators. So, * (multiplication) always
takes precedence over + (addition), regardless of what they are actually implemented to mean
for a type.

Overloading operators in managed types

Let’s start by adding operator overloading to value types and then move on to reference types. You
already know that value types are the types most likely to need operator overloading.

Overloading arithmetic operators
In this exercise, you’ll see how to implement operators in a value type. The exercise also introduces
many of the techniques you’ll need to use when adding operator overloading to your own types.

1.	 Start Microsoft Visual Studio 2012 and create a new CLR Console Application project named
Overload.

2.	 At the top of the Overload.cpp file, immediately below the using namespace System; line, add
the following struct definition:

// The IntVal struct definition
value struct IntVal
{
private:
 int value;
public:
 IntVal(int v) : value(v) { }
 int getVal() { return value; }
};

This simple struct is the one you’ll use throughout these exercises. It simply wraps an int and
then provides a constructor for creating and initializing IntVal objects and a get function for
accessing the data member. Chapter 9, “Value types,” explains that the keyword value makes
IntVal a .NET value type rather than a traditional C++ structure.

162   Microsoft Visual C++/CLI Step by Step

3.	 Create three IntVal objects, replacing the body of the main function with the following code:

IntVal one(1);
IntVal two(2);
IntVal three; // will get zero value

Because value types always have a default constructor, three will be initialized to zero.

4.	 Try adding one and two and assigning the result to three, followed by a WriteLine statement to
print the value of three.

three = one + two;
Console::WriteLine(three.getVal());

When you build the application, you get an error (C2676), informing you that the compiler
can’t find a “+” operator that works with your objects.

5.	 Implement the “+” operator for IntVal by adding the following function to the struct definition,
placing it after the getVal function:

IntVal operator+(IntVal rhs)
{
 IntVal result(value + rhs.value);
 return result;
}

Let’s analyze this function. An overloaded operator is represented by a function whose name
starts with operator, which also has the operator symbol appended to it. So, the == operator
would be represented by a function called operator==, the > operator by operator>, and so
on.

When the compiler sees the code

one + two

it is actually calling the function you define, like this:

one.operator+(two)

Thus, a binary operator (one that takes two operands) is represented by a member func-
tion that takes one argument, the right-hand side of the + operation. A unary operator (one
that takes a single operand, such as the “–“ in –1) is represented by a function that takes no
arguments.

Now, let’s look at how the operator is implemented. The result of one + two is not one or two,
but a new value that represents their sum. In the code, therefore, we create a new object that
is initialized with the sum of the two values and return it.

6.	 Build the application again.

You should find that the compilation is successful because the compiler can find a “+” that
works with IntVal objects. If you run the application, you should see the value “3” printed out.

	 Chapter 10  Operator overloading    163

Now that you’ve seen how to implement addition, it should be easy for you to implement the
other arithmetic operators. Indeed, because this class represents a simple integer value, you probably
should implement them so that they are consistent with the behavior of integers.

Tip  The last sentence in the previous paragraph introduces a very important point: It is
up to you to define all the operators that make your type work properly. See the section
“Guidelines for providing overloaded operators” at the end of the chapter for more details.

Using static operator overloads
Becasue IntVal is basically just an int wrapped up in a struct, it would seem reasonable to want to
do this:

three = one + 2;

You can easily add an overload of operator+ that takes an int, such as in the following:

IntVal operator+(int rhs)
{
 IntVal result(value + rhs);
 return result;
}

How about this next example? The rules of basic addition dictate that this should be equivalent:

three = 2 + one;

If you try this, however, it will not work, because the compiler cannot find a function that takes an
int as its left operand. But you cannot add such a function to IntVal, because such functions always
have to have an object as their left operand.

The solution is to create a static operator overload in the IntVal class, and you would do this for
any binary operator that is symmetrical (for example, you would expect a == 3 to be the same as
3 == a)

This exercise shows you how to add a static addition operator to the IntVal class.

1.	 Continue using the project from the previous exercise.

2.	 Add a line to the main function that tries to use an int as the left operand. Verify that it
doesn’t compile:

three = 2 + one;

164   Microsoft Visual C++/CLI Step by Step

3.	 Add a static version of operator+ to IntVal:

static IntVal operator+(int lhs, IntVal rhs) {
 IntVal result(lhs + rhs.value);
 return result;
}

Remember that static members belong to a class (or structure) as a whole rather than to any
one object. This means that they aren’t associated with an object, and so they need to be
passed to both operands.

If you want, you can implement three overloads of the static operator, one for (IntVal, IntVal),
one for (IntVal, int), and one for (int, IntVal), and not have the non-static version at all. But, it
turns out that there is a much neater solution, which you will see in the exercise that follows
this one.

4.	 Add the following function to the struct, placing it after the getVal function:

static operator IntVal(int v)
{
 return IntVal(v);
}

This is an example of a conversion operator, a function that directs the compiler how to
convert to and from a type. This function instructs the compiler how to get from an int to
an IntVal by creating an IntVal and initializing it with the int. In effect, you are saying to the
compiler, “If you see an int but you want an IntVal, here’s what to do.” If you don’t have such a
conversion operator, the compiler won’t be able to perform the conversion.

Conversions and C++/CLI
Standard C++ embodies the concept of converting constructors. If you defined IntVal as a
standard C++ structure, the constructor that takes an int would allow the compiler to implicitly
convert ints to IntVals wherever it is needed. Microsoft decided to disallow this implicit conver-
sion in C++/CLI, so even if you have a suitable constructor, you have to provide a conversion
operator to signal the compiler that it can perform the conversion.

This next exercise shows you how the conversion operator makes it possible to use a single opera-
tor+ function that works with all combinations of IntVal and int.

1.	 Delete any existing operator+ functions and replace them with this single one:

static IntVal operator+(IntVal lhs, IntVal rhs) {
 IntVal result(lhs.value + rhs.value);
 return result;
}

This function adds two IntVals, but it also copes with an int as either the right or left operand
because we’ve now instructed the compiler that it can convert between int and IntVal.

	 Chapter 10  Operator overloading    165

2.	 Edit the code in main to test all the possible options:

three = one + two;
Console::WriteLine("three is {0}", three.value);

three = one + 2;
Console::WriteLine("three is {0}", three.value);

three = 2 + one;
Console::WriteLine("three is {0}", three.value);

You can verify that the conversion is occurring by using the debugger.

3.	 Place a breakpoint in the code by clicking in the gray margin to the left of the three = 2 +
one line.

4.	 Press F5 to start the debugging session.

After the application loads, it executes and stops at the breakpoint. At this point, scroll up and
place another breakpoint at the first line of the operator+ function.

5.	 Press F11.

This brings you to the operator+ function at the breakpoint. At the bottom of the window, in
the Locals pane, look at the values. Observe that both lhs and rhs are IntVals, showing that the
int has been converted for you.

You can see that—provided that your types implement the correct constructors and conversion
operators—you can sometimes use one operator overload to perform a family of operations.

6.	 When you are done, discontinue the debugging session either by pressing the dark-red
square on the Debug toolbar, by clicking Stop Debugging on the Debug menu, or by pressing
Shift+F5.

Overloading compound assignment operators
C++ has a number of compound assignment operators, such as “+=” and “–=”, with which you
can use x += 2 as shorthand for x = x + 2. In standard C++, they are considered completely
separate operators; you don’t get “+=” just because you have overloaded the “+” and “=”
operators.

In C++/CLI, the compound assignment operators are synthesized for you. This means that
x += 2 is rewritten as x = x + 2 so that your overloaded “+” operator can be used.

166   Microsoft Visual C++/CLI Step by Step

What functions can you overload?
You can overload most operators in C++, including all the common ones such as the arithmetic and
logical operators. However, .NET places a premium on interoperability between languages: whenever
you use classes from the .NET Framework, such as String, you are using code written in C#, and it is
quite possible that someone using C# or Visual Basic .NET might want to use your C++/CLI types in
their code. If you know that your code is never going to be used by any other language, you can skip
the rest of this section.

The CLS defines those features that a language is required to support. A lot of this is only of inter-
est to language implementers, but one thing that interests us here is the list of operators that CLS-
compliant languages are required to support.

If your intent is that your overloaded operators should be able to be used in other .NET languages,
you need to follow several rules:

■■ Operator functions must be static members of the class or structure.

■■ Value types must be passed or returned by value.

■■ Ref types must be passed or returned by reference.

If your operators don’t follow these rules, they are too closely affiliated with C++ and will not work
in the wider .NET world.

Following is the list of CLS-compliant operators. If you implement any of these, you can expect
them to be usable from other .NET languages. Because some languages don’t have a concept of
operator overloading, each operator has a .NET function name, in the same way that Int32 is the .NET
type that underlies int.

CLS name C++ operator function

op_AddressOf operator&

op_LogicalNot operator!

op_OnesComplement operator~

op_PointerDereference operator*

op_UnaryNegation operator-

op_UnaryPlus operator+

op_Addition operator+

op_BitwiseAnd operator&

op_BitwiseOr operator|

op_Comma operator,

op_Decrement operator--

op_Division operator/

op_Equality operator==

op_ExclusiveOr operator^

	 Chapter 10  Operator overloading    167

CLS name C++ operator function

op_GreaterThan operator>

op_GreaterThanOrEqual operator>=

op_Increment operator++

op_Inequality operator!=

op_LeftShift operator<<

op_LessThan operator<

op_LessThanOrEqual operator<=

op_LogicalAnd operator&&

op_LogicalOr operator||

op_Modulus operator%

op_Multiply operator*

op_RightShift operator>>

op_Subtraction operator-

Note  You cannot overload the gcnew and delete operators as you can in standard C++. This
is because memory allocation is the job of the .NET runtime, and you are not allowed to
take this task over yourself.

Implementing logical operators
We’ve dealt with the arithmetic operators, so let’s continue by considering the logical and comparison
operators. C++ offers a set of comparison operators, which are summarized in the following table:

Operator Description

== Equality

!= Inequality

> Greater than

>= Greater than or equal to

< Less than

<= Less than or equal to

Implementing these operators is simple and follows the model of the addition operator in the
previous examples. Here’s how to implement the equality operator (==):

168   Microsoft Visual C++/CLI Step by Step

1.	 Using the same project as in the previous exercises, find the operator+ function in your code
and add the following function after it:

static bool operator==(IntVal lhs, IntVal rhs) {
 return lhs.value == rhs.value;
}

The function follows the same pattern as the operator+. It is a static member of the IntVal
structure, but this time it returns a Boolean, just as you’d expect a logical operator to do, and
it makes its decision based on the internal structure of its two operands.

2.	 Add some test code to main to test the new operation:

if (three == 3)
 Console::WriteLine("All is OK");
else
 Console::WriteLine("Something is very wrong!");

3.	 Build and run the application to verify that the operator is working as you expect.

4.	 If you implement equality you need to implement inequality, as well, so add a definition for
operator!= to IntVal:

static bool operator!=(IntVal lhs, IntVal rhs) {
 return !(lhs == rhs);
}

Notice how this is implemented: it uses operator== to compare the two objects and then
uses the logical NOT operator to negate the result. Delegating the comparison to operator==
rather than comparing the internals of the objects themselves is not only slightly less typing,
but if the internal structure of IntVal were to change, you only have to change the operator==
function and you have automatically updated operator!=, as well.

5.	 Add some test code for this new operator.

if (three != 3)
 Console::WriteLine("Something is wrong!");
else
 Console::WriteLine("Inequality working OK");

6.	 Build and run the application to ensure that all is working correctly.

The other logical operators (<, <=, >, and >=) can be overloaded in a similar way, and you can
make use of the same shortcut when implementing them.

	 Chapter 10  Operator overloading    169

What is equality?
Deciding whether to implement == and != depends on the type you’re writing, and it might
not be a simple decision. For some types the choice is obvious: consider a Point type that has
x and y coordinates. In this case, two Points are equal if their x and y members have the same
value.

What about a Currency class that has a value and a currency type? You might say that two
Currency objects are the same if both the value and the currency are identical. Likewise, you
might decide that two objects are the same if their values are the same when converted to a
common base currency such as dollars or Euros. Both approaches are equally valid; it’s up to
you to choose one and document it.

There might also be classes for which any notion of equality is artificial. Consider a Bank
Account class: what would equality mean? Two accounts can’t be completely identical because
they have different, unique account numbers. You might choose something that counts as
equality (such as having the same balance) but there is no obvious meaning. You might well
decide that equality is not meaningful for such types.

As a final point, remember that testing for equality can pose problems for floating-point
values. It is well known that computations on these types can introduce rounding errors in the
final decimal places; thus, two values which should be identical might not test as equal.

One way around this is to define such values as being equal if they are within a tolerance; for
example:

if (Math::Abs(value1 - value2) < 0.00001)
 // they are equal
else
 // they are not

The Math::Abs function is a static member of the Math class that returns the absolute value
of its operand.

Implementing Equals
All types in .NET ultimately inherit from the System::Object class. This class provides several functions
that all .NET types inherit, and the one that is particularly relevant to our discussion of equality is the
Equals function.

170   Microsoft Visual C++/CLI Step by Step

With Object::Equals, types can provide a way to compare content, as opposed to comparing refer-
ences. This is the same job that you’ve been doing by implementing the == operator, but it works
for languages that don’t support operator overloading. This means that if your types are going to be
used from other .NET languages, you need to implement the Equals function.

In this exercise, you will implement Equals for the IntVal structure:

1.	 Continue using the same project. Add the following function to the end of the IntVal structure
definition:

virtual bool Equals(Object ^other) override
{
 IntVal ^obj = dynamic_cast<IntVal^>(other);
 if (obj == nullptr)
 return false;

 return value == obj->value;
}

This function is more complex than the others you’ve looked at, so you might want to compile
the code to ensure that you haven’t made any coding errors. Let’s examine the code line by
line. The function is inherited from System::Object, so you need to use both the virtual and
override modifiers to show that you are overriding a base class virtual function. Equals takes a
handle to an Object as its argument because it is inherited by all classes and so can be used to
compare any type at all.

The first thing you need to do is to use dynamic_cast to convert the Object handle into an
IntVal handle.

Note  dynamic_cast is a C++ casting mechanism that performs a cast at run time,
returning a nullptr if the types don’t match.

If the handle passed in wasn’t an IntVal, the cast will return null. You know that two objects of
different types can’t be equal, so you can return false immediately. If the result is not null, we
have an IntVal. Comparison is then simply a case of comparing the fields of the two objects to
see if they are the same.

2.	 Test the Equals function by creating some IntVal objects and checking if they are equal:

IntVal four(4), anotherFour(4), five(5);

if (four.Equals(anotherFour))
 Console::WriteLine("All is OK");
else
 Console::WriteLine("Something is wrong...");

if (four.Equals(five))
 Console::WriteLine("Something is very wrong!");
else
 Console::WriteLine("All is OK");

	 Chapter 10  Operator overloading    171

You might wonder how an IntVal object is turned into an Object handle in the call to Equals.
If the compiler sees a value type being used where a reference type is wanted, it automati-
cally wraps it in an object wrapper, a process called boxing, which is discussed in more detail in
Chapter 22 “Working with unmanaged code.”

3.	 Build and run the application to ensure the results are what you expect.

Points about Equals
System::ValueType, the base type for all structures, implements a version of Equals. This means
that you don’t actually need to provide your own, but you might want to because the inherited
version can be very slow. It uses a feature called reflection to examine objects at run time, find
their data members, and compare them. If you find that the performance of Equals is a con-
cern, you now know how to provide your own version.

If you do override Equals, you should also consider overriding the GetHashCode function,
as well. A hashcode is an integer value that represents an object. It is used when storing data in
dictionaries. If two objects are “equal,” they should have the same hashcode. Calculating hash-
codes is beyond the scope of this book.

Implementing increment and decrement
As a final example, this section shows you how to overload the increment and decrement operators
(++ and ––). As is discussed in Chapter 3, the built-in ++ and –– operators are used to increment and
decrement the value of integer variables. You can overload them for your own types, and it makes
sense to use them wherever you have the idea of incrementing or decrementing. For example, if
you had a Date type, you could overload ++ and –– to add or subtract a day from the current date,
adjusting the month and year as appropriate.

You also saw how these operators can be placed before or after the variable. If placed before
(called pre-increment and pre-decrement), the value will be adjusted before the variable is used in
the expression. If placed after (post-increment and post-decrement), the original value is used in the
expression, and the value adjusted after it has been used.

In standard C++, you would provide two operator overloads each for ++ and ––, one each for the
pre-increment and post-increment cases. In C++/CLI, you implement the overload of each operator as
a single static member, and this does for both cases.

1.	 Continue with the same project. Add the following method to the IntVal structure:

static IntVal operator++(IntVal i)
{
 i.value++;
 return i;
}

172   Microsoft Visual C++/CLI Step by Step

The static function takes a single IntVal as its argument, increments its value, and then
returns it.

2.	 Test out the operator in code, such as the following:

IntVal first(3);

IntVal next = ++first; // pre-increment
Console::WriteLine("pre-inc, next = {0}, first = {1}",
 next.value, first.value);

next = first++; // post-increment
Console::WriteLine("post-inc, next = {0}, first = {1}",
 next.value, first.value);

3.	 Build and run the application.

The following output displays, showing that your operator is working in both pre and post-
increment situations:

pre-inc, next = 4, first = 4;
post-inc, next = 4, first = 5;

The variable first started with the value 3. The pre-increment changed it to 4 and then used it
in the assignment. The post-increment did the assignment and then increased the value.

After you have implemented the increment operator, it will be simple to employ decrement in the
same way.

Operators and reference types
Implementing operators for reference types is very similar to implementing them for value types, the
main difference being that you need to deal with handles to objects. As an example, here is part of
the IntVal structure, re-implemented as a ref type rather than a value type:

ref struct IntVal
{
 int value;

 IntVal(int v) : value(v) { }

 static operator IntVal^(int v)
 {
 return gcnew IntVal(v);
 }

 static IntVal^ operator+(IntVal ^lhs, IntVal ^rhs) {
 IntVal^ result = gcnew IntVal(lhs->value + rhs->value);
 return result;
 }
};

	 Chapter 10  Operator overloading    173

int main(array<System::String ^> ^args)
{
 IntVal ^one = gcnew IntVal(1);
 IntVal ^two = gcnew IntVal(2);

 IntVal ^three = one + two;
 Console::WriteLine("Three is {0}", three->value);

 IntVal ^anotherThree = 1 + two;
 Console::WriteLine("anotherThree is {0}", anotherThree->value);

 return 0;
}

You can see how objects and the dot operator have been replaced by handles and ->, and objects
are created by using gcnew. Apart from that, the code is substantially the same.

Guidelines for providing overloaded operators
The most important guideline to keep in mind is that overloaded operators must make intuitive sense
for a class. For instance, if you have a String class, using + to concatenate the Strings is pretty intuitive.
You might get some agreement that –, as in s2 – s1, would mean “look for s1 within s2, and if you find
it, remove it.” However, what could the * operator mean when applied to two Strings? There’s no obvi-
ous meaning, and you’re only going to confuse people if you provide it. So, ensure that the operators
you provide for your types are the ones that people expect to find.

The second guideline is operator usage must be consistent. In other words, if you overload ==,
ensure that you overload !=, as well. The same goes for < and >, ++ and ––, and so on.

The third guideline is don’t overload obscure operators or ones that change the semantics of the
language. Operators such as the comma are obscure, and few people know how they work, so it isn’t
a good idea to overload them. Other operators, such as the logical AND and OR operators (&& and
||), can cause problems. In earlier chapters, you learned about the if statement and how expressions
joined by && and || are only evaluated if necessary. As a result, some expressions in an if statement
might never be evaluated. If you overload the AND and OR operators, the whole of the expression will
have to be evaluated, which changes the way the if works.

174   Microsoft Visual C++/CLI Step by Step

Quick reference

To Do this

Overload operators. Implement a function having the name operator with the
operator symbol appended. For example:

IntVal operator+(IntVal other)
{
 ...
}

Overload operators for value types. Pass arguments and return values as value objects.

Overload operators for reference types. Pass arguments and return values as handles.

Implement equality tests. Overload == and != and provide an overload of Equals
for the benefit of other .NET languages.

		 175

C H A P T E R 1 1

Exception handling

After completing this chapter, you will be able to:

■■ Explain what exceptions are.

■■ Recognize the different types of exceptions that can be used in C++/CLI.

■■ Describe how to generate exceptions.

■■ Explain how to handle exceptions.

■■ Create your own exception classes.

Now that you know how to construct classes and value types and use them in programming, this
chapter introduces you to exception handling, a powerful way of managing errors within C++

applications.

What are exceptions?

Exceptions are an error-handling mechanism employed extensively in C++ and several other modern
programming languages. Traditionally, error and status information is passed around by using func-
tion return values and parameters, as demonstrated in the following:

// Pass status back as return value
bool bOK = doSomething();

// Pass status back in a parameter
int status;
doSomething(arg1, arg2, &status);

Note  The “&” (ampersand character) denotes a reference in standard C++, in the same way
that “%” denotes a tracking reference in C++/CLI.

176   Microsoft Visual C++/CLI Step by Step

Although this is a tried-and-tested way of passing status information around, it suffers from several
drawbacks:

■■ You can’t force the programmer to do anything about the error.

■■ The programmer doesn’t even have to check the error code.

■■ If you’re deep within in a series of nested calls, you must set each status flag and back out
manually.

■■ It’s very difficult to pass back status information from something that doesn’t take arguments
or return a value.

Exceptions provide an alternative error-handling mechanism, which gives you three main advan-
tages over traditional return-value error handling:

■■ Exceptions can’t be ignored  If an exception isn’t handled at some point, the application
will terminate, which makes exceptions suitable for handling critical errors.

■■ Exceptions don’t have to be handled at the point where the exception occurs  An error
can occur many levels of function call deep within an application, and there might not be a
way to fix the problem at the point at which the error occurs. Exceptions make it possible for
you to handle the error anywhere up the call stack. (See the upcoming sidebar “The call stack
and exceptions.”)

■■ Exceptions provide a useful way to signal errors when a return value can’t be
used  There are two particular places in C++ where return values can’t be used: constructors
don’t use them, and overloaded operators can’t have their return value overloaded to use for
error and status information. Exceptions are particularly useful in these situations because
they give you a means to sidestep the normal return-value mechanism.

The call stack and exceptions
At any point in an application, the call stack holds information about which functions have
been called to get to the current point. The call stack is used in three main ways by applica-
tions: during execution to control calling and returning from functions, by the debugger, and
during exception handling.

The handler for an exception can occur in the routine in which the exception was thrown. It
can also occur in any routine above it in the call stack, and, at run time, each routine in the call
stack is checked to see if it implements a suitable handler. If nothing suitable has been found
by the time the top of the stack has been reached, the application terminates.

In .NET, exceptions have one other significant advantage: They can be used across languages.
Because exceptions are part of the underlying Microsoft .NET Framework, it’s possible to throw an
exception in C++/CLI code and catch it in Microsoft Visual Basic .NET, something that isn’t possible
outside the .NET environment.

	 Chapter 11  Exception handling    177

As is the case with any other error mechanism, you’ll tend to trigger exceptions by making errors in
your code. However, you can also generate exceptions yourself if necessary, as you’ll see shortly.

How do exceptions work?
When an error condition occurs, the programmer can generate an exception by using the throw key-
word, and the exception is tagged with a piece of data that identifies exactly what has happened. At
this point, normal execution stops and the exception-handling code built in to the application begins
looking for a handler. It looks in the currently executing routine, and if it finds a suitable handler, the
handler is executed and the application continues. If it doesn’t find a handler in the current routine,
the exception-handling code moves one level up the call stack and checks for a suitable handler
there. This process carries on until either the application finds a handler or it reaches the top level in
the call stack—the main function. If nothing has been found by this time, the application terminates
with an “unhandled exception” message.

Here’s an example of how an unhandled exception appears to you. You’ve probably seen a lot of
these already! Look at the following simple code fragment:

Console::WriteLine("Exception Test");
int top = 3;
int bottom = 0;

int result = top / bottom;
Console::WriteLine("Result is {0}", result);

It’s easy to see that this code is going to cause a divide-by-zero error, and when it is executed, you
see the result shown in the following screen shot:

You can see that the divide-by-zero has resulted in an exception being generated. Because I
didn’t handle it in the code, the application has been terminated, and the final output never makes
it to the screen. Notice the form of the standard message: it informs you as to what happened (a
System::DivideByZeroException error), presents an error message, and then gives you a stack trace that
directs you to where the error occurred (in this case, in the main function at line 13 in the Exception-
Test.cpp file).

System::DivideByZeroException denotes the kind of object that was passed in the exception. A lot of
exception classes are provided in the System namespace, and it’s also likely that you’ll make up your
own based on the System::Exception base class, as you’ll see later in the chapter.

178   Microsoft Visual C++/CLI Step by Step

Exception types
Exception handling is slightly complicated in that you might encounter three different types of excep-
tion handling when using C++/CLI: traditional C++ exceptions, C++/CLI exceptions, and Microsoft
Windows Structured Exception Handling (SEH). Traditional C++ exceptions form the basis of all excep-
tion handling in C++. C++/CLI adds the ability to use managed types (for example, ref classes and
value types) in exceptions, and you can mix them with traditional exceptions. C++/CLI also extends
exception handling by adding the concept of a finally block, which I discuss in the section “The finally
block” later in the chapter. The third sort of exception handling, SEH, is a form of exception handling
built in to Windows operating systems that is independent from C++. I won’t talk any more about SEH
here, except to note that you can interact with it from C++.

Throwing exceptions

Let’s start our exploration of exceptions by discussing how to generate, or throw, them. You’ll end up
generating far more exceptions by accident than by design, but you need to know how to generate
your own when errors occur in your application.

What can you throw?
In traditional C++, you can attach any type of object to an exception, so you can use built-in
types (such as int and double) as well as structures and objects. If you throw objects in C++, you
usually throw and catch them by reference.

.NET languages throw and catch objects that are of types inheriting from the
System::Exception base class, so although you can throw built-in types, you should use
Exception-derived objects when you’re writing .NET code.

When should you throw?
You should use exceptions to signal conditions that are in some way exceptional; in other
words, situations that are unusual, and which definitely need attention by the caller. Don’t use
exceptions for normal flow of control in your application. For example, throwing an exception
because your code can’t find a file that ought to be present is fine; using an exception to signal
that you’ve read to the end of a file isn’t, because that is a normal and expected occurrence,
not an exceptional one.

How do you know what to throw? There are a large number of exception classes in the System
namespace, all of which derive from Exception. A number of those you’ll commonly encounter are
listed in the following table. You should be able to find the exception class to suit your purposes, and
if you can’t, it’s always possible to derive your own exception classes from System::Exception.

	 Chapter 11  Exception handling    179

Exception class Description

System::ApplicationException Thrown when a non-fatal application error occurs.

System::ArgumentException Thrown when one of the arguments to a function is in-
valid. Subclasses include System::ArgumentNullException
and System::ArgumentOutOfRangeException.

System::ArithmeticException Thrown to indicate an error in an arithme-
tic, casting, or conversion operation. Subclasses
include Sytem::DivideByZeroException and
System::OverflowException.

System::Exception The base class of all exception types.

System::IndexOutOfRangeException Thrown when an array index is out of range.

System::InvalidCastException Thrown when an invalid cast or conversion is attempted.

System::MemberAccessException Thrown when an attempt is made to dynamically
access a member that doesn’t exist. Subclasses include
Sytem::MissingFieldException and Sytem::Missing
MethodException.

System::NotSupportedException Thrown when a method is invoked that isn’t supported.

System::NullReferenceException Thrown when an attempt is made to dereference a null
reference.

System::OutOfMemoryException Thrown when memory cannot be allocated.

System::SystemException The base class for exceptions that the user can be expect-
ed to handle. Subclasses include ArgumentException and
ArithmeticException.

System::TypeLoadException Thrown when the Common Language Runtime (CLR)
cannot find an assembly or a type within an as-
sembly, or cannot load the type. Subclasses include
System::DllNotFoundException.

The following exercise shows you how to generate an exception. In the section that follows, you’ll
go on to see how to catch and process the exception.

1.	 Start Microsoft Visual Studio 2012 and create a new CLR Console Application project named
Throwing.

2.	 Immediately after the using namespace System; line and immediately before main, add the
following function definition:

void func(int a)
{
 if (a <= 0)
 throw gcnew ArgumentException("Aaargh!");
}

This simple function takes an integer argument, and if its value is less than 0, it throws an
exception. In this case, I’m creating a new System::ArgumentException object, initializing it with
a string, and then throwing it.

180   Microsoft Visual C++/CLI Step by Step

3.	 Insert code to test the behavior by adding the following code to the main function:

Console::WriteLine("Throw Test");
Console::WriteLine("Calling with a=3");
func(3);
Console::WriteLine("Calling with a=0");
func(0);
Console::WriteLine("All done");

The code calls the function twice, once with a valid value and once with 0, which should trig-
ger the exception.

4.	 Compile and run the application, and you should see something similar to the following
screen shot:

The application has called the function once without incident, but the second call has triggered an
exception. As before, you get a message and a stack trace. This time the message is the string used to
initialize the exception object and the stack trace has two levels, showing that the exception was trig-
gered at line 10 in the func function, which was called from the main function at line 20.

Note  The precise line number you see reported in the exception stack trace depends on
exactly how you typed in and formatted your code.

Handling exceptions

Now that you’ve seen how to generate exceptions, let’s move on to handling them.

Using the try and catch construct
You catch exceptions and process them by using the try/catch construct, which has the following
form:

try
{
 // code that may fail
}
catch(TypeOne ^one)
{
 // handle this exception
}

	 Chapter 11  Exception handling    181

catch(TypeTwo ^two)
{
 // handle this exception
}

Code that you suspect might fail is enclosed in a try block that is followed by one or more han-
dlers in the form of catch blocks. Each catch block looks a little like a function definition, with catch
followed by a type in parentheses, which represents the type that will be caught and processed by the
catch block. In the preceding code, the first catch block handles exceptions tagged with a TypeOne^
object, whereas the second block handles those tagged with a TypeTwo^ object.

Note  try and catch blocks form a single construct. You can’t have a try block without at
least one catch block, you can’t have a catch block without a try block, and you can’t put
anything in between them.

You can chain as many catch blocks together as there are exception types to catch, as long as you
have at least one.

The following exercise shows you the basics of handling exceptions, using the example from the
previous exercise as a basis.

1.	 Continue using the project from the previous exercise

2.	 Modify the main function to look like the following:

Console::WriteLine("Throw Test");

try
{
 int a = 3;
 Console::WriteLine("Calling with a=3");
 func(a);
 Console::WriteLine("Calling with a=0");
 a = 0;
 func(a);
}
catch(System::ArgumentException ^ex)
{
 Console::WriteLine("Exception was {0}", ex);
}
Console::WriteLine("All done");

The calls to the function are enclosed in a try block, which is followed by a single catch block.
When the second call to the function fails, the exception-handling mechanism takes over. It
can’t find a handler in the function where the error originated, so it walks one level up the call
stack and comes out in the try block.

182   Microsoft Visual C++/CLI Step by Step

At this point, the runtime wants to go off looking for a handler. As part of this process, it puts
the program stack back to where it was at the start of the try block. In other words, it unwinds
the stack, which means that it destroys any variables that have been created on the stack
within the try block, so you can’t use them in the catch block. You need to keep this in mind
when writing exception handlers and declare any variables you need to use in the catch block
outside the corresponding try.

When the stack has been unwound, the code looks at the catch blocks associated with this try
block to see whether there is one that has an argument type that matches what was thrown.
In this case, you have a match, so the contents of the catch block are executed. If there wasn’t
a suitable catch block, the runtime would try to move up another level of the call stack and
then would fail and terminate the application.

3.	 Execute this code.

You should see something very similar to the following screen shot:

The second function call has generated an exception that has been caught by the catch block,
which has printed out “Exception was:” plus the exception details. In contrast to what hap-
pened in the previous exercise, the final “All done” message is now printed. This illustrates an
important point about exception handling: After a catch block has been executed, application
execution continues after the catch block as if nothing had happened. If there are any other
catch blocks chained to the one that is executed, they’re ignored.

4.	 Try changing the second call so that it passes in a positive value. You’ll find that the catch
block isn’t executed at all. If a try block finishes without any exception occurring, execution
skips all the catch blocks associated with the try block.

Customizing exception handling
Just printing out the exception object results in the type-plus-message-plus-stack trace that you saw
when the exception was unhandled. You can use properties of the Exception class to control what is
printed, as shown in the following table:

System::Exception property Description

Message Returns a string containing the message associated with
this exception.

StackTrace Returns a string containing the stack trace details.

Source Returns a string containing the name of the object or
application that caused the error. By default, this is the
name of the assembly.

	 Chapter 11  Exception handling    183

Here’s a brief exercise that demonstrates the use of Exception class properties:

1.	 Continue using the project from the previous exercise. Edit the main function to set a back to
zero before the second call to func.

2.	 Edit the catch statement in the main function to read as follows:

catch(System::ArgumentException ^ex)
{
 Console::WriteLine("Exception was {0}", ex->Message);
}

3.	 Build and run the application.

You should see a result like this:

Exception was Aaargh!

In a similar way, you could use StackTrace to retrieve and print the stack trace information.

Using the exception hierarchy
The exception classes form a hierarchy based on System::Exception, and you can use this hierarchy
to simplify your exception handling. As an example, consider System::ArithmeticException, which
inherits from System::Exception and has subclasses that include System::DivideByZeroException and
System::OverflowException. Now, look at the following code:

try
{
 // do some arithmetic operation
}
catch(System::ArithmeticException ^aex)
{
 // handle this exception
}
catch(System::DivideByZeroException ^dex)
{
 // handle this exception
}

Suppose that a DivideByZeroException is thrown. You might expect it to be caught by the second
catch block, but it will, in fact, be caught by the first one. This is because according to the inheri-
tance hierarchy, a DivideByZeroException is an ArithmeticException, so the type of the first catch block
matches. To get the behavior you expect when using more than one catch block, you need to rank
the catch blocks from most specific to most general.

Tip  The compiler will give you warning C4286 if you have the catch blocks in the wrong
order. This works for both managed and unmanaged code.

184   Microsoft Visual C++/CLI Step by Step

So, if you just want to catch all arithmetic exceptions, you can simply put in a handler for
ArithmeticException, and all exceptions from derived classes will be caught. In the most general
case, you can simply add a handler for Exception, and all managed exceptions will be caught.

Using exceptions with constructors
In the section “What are exceptions?” earlier in this chapter, I mentioned one of the advantages of ex-
ceptions is that they make it possible for you to signal an error where there’s no way to return a value.
They’re very useful for reporting errors in constructors, which, as you now know, don’t have a return
value.

In the following exercise, you’ll see how to define a simple class that uses an exception to report
errors from its constructor, and you’ll also see how to check for exceptions when creating objects of
this type.

1.	 Create a new CLR Console Application project named CtorTest.

2.	 Immediately after the using namespace System; line and immediately before main, add the
following class definition:

ref class Test
{
 String ^str;
public:
 Test(String ^s)
 {
 if (s == nullptr || s == "")
 throw gcnew System::ArgumentException("Argument null or blank");
 else
 str = s;
 }
};

The ref keyword makes this class managed, and this managed class has one simple data mem-
ber, a handle to a managed String. At construction time, this handle must not be null or point
to a blank string, so the constructor checks the handle and throws an exception if the test fails.
If the handle passes the test, construction continues.

Note  The nullptr keyword represents a null value for a handle; it must be used
where a null value is required. This is in contrast to standard C++, in which you can
use a numeric “0” to represent a null pointer.

	 Chapter 11  Exception handling    185

3.	 Try creating an object in the main function, as shown in the following:

int main()
{
 Console::WriteLine("Exceptions in Constructors");
 // Create a null handle to test the exception handling
 String ^s = nullptr;

 Test ^t = nullptr;

 // Try creating an object
 try
 {
 t = gcnew Test(s);
 }
 catch(System::ArgumentException ^ex)
 {
 Console::WriteLine("Exception: {0}",
 ex->Message);
 }

 Console::WriteLine("Object construction finished");
 return 0;
}

Notice that the call to gcnew is enclosed in a try block. If something is wrong with the String
handle (as it is here), the Test constructor will throw an exception that will be caught by the
catch block.

4.	 Build and run the application, and you will see the output from the catch block. Try modifying
the declaration of the string so that it points to a blank string (initialize it with “”), and then try
a nonblank string (for example, “hello”) to check that the exception is thrown correctly.

Nesting and rethrowing exceptions
Now that you’ve seen how to use the try/catch construct, let’s move on to cover some more advanced
uses. The first of these are nesting and rethrowing exceptions.

As the name implies, nesting exceptions means including one try/catch construct within another,
which can provide a useful way to handle error conditions. It works as you might expect:

try // outer try block
{
 try // inner try block
 {
 // Do something
 }
 catch(SomeException ^ex1)
 {
 Console::WriteLine("Exception: {0}", ex1->Message);
 }
}

186   Microsoft Visual C++/CLI Step by Step

catch(OtherException ^ex2)
{
 Console::WriteLine("Exception: {0}", ex2->Message);
}

If an exception occurs within the inner try block that is of type SomeException^, it will be handled
by the inner catch block and execution will continue after the end of the inner catch block, as usual.
The outer catch block will not be executed in this case because the error has already been adequately
handled.

If an exception occurs within the inner try block that is of type OtherException^, it won’t be
handled by the inner catch block, so it will be passed to the outer try and catch construct, where it is
processed by the outer catch block.

Note  You can nest try and catch constructs to several levels, but it’s unusual to go more
than two levels deep because it can overcomplicate the structure of the code.

Rethrowing an exception means just that—handling an exception in a catch block and then throw-
ing it again so that it can be handled somewhere else. The following exercise shows how to catch an
exception and rethrow it.

1.	 Create a new CLR Console Application project named Rethrow.

2.	 Immediately after the using namespace System; line and immediately before main, add the fol-
lowing function definition:

void func(int a)
{
 try
 {
 if (a <= 0)
 throw gcnew ArgumentException("Aaargh!");
 }
 catch(ArgumentException ^ex)
 {
 Console::WriteLine("Exception caught in func()");
 }
}

This function is basically the same simple function to which you were introduced at the start of
the chapter. It throws a System::ArgumentException when it has passed a negative argument.
The difference here is that the exception is being caught within the function.

	 Chapter 11  Exception handling    187

3.	 Modify the main function so that it looks like this:

Console::WriteLine("Throw Test");

try
{
 int n = 0;
 Console::WriteLine("Calling with n=0");
 func(n);
}
catch(ArgumentException ^ex)
{
 Console::WriteLine("Exception caught in main()");
}
Console::WriteLine("All done");

If you run this code, you’ll find that the exception is caught locally in func and the catch block
in main doesn’t execute.

4.	 Modify the definition of func so that it rethrows the exception after handling it.

void func(int a)
{
 try
 {
 if (a <= 0)
 throw gcnew ArgumentException("Aargh!");
 }
 catch(ArgumentException ^ex)
 {
 Console::WriteLine("Exception caught in func()");
 throw; // rethrow the exception
 }
}

Using throw without an argument rethrows the current exception, and it can be used in this
way only within a catch block. At this point, the runtime goes off looking for another handler,
which means moving up the call stack to the main function, where the exception is caught a
second time.

5.	 Build and run this application.

The “Exception caught in func()” and “Exception caught in main()” messages print, demon-
strating that the exception has been handled twice.

Note that you don’t have to rethrow the same exception; it’s quite usual to catch one type of ex-
ception, handle it, and then rethrow an exception of another type. You’ll see an example of this in the
section “Creating your own exception types” later in this chapter.

188   Microsoft Visual C++/CLI Step by Step

The finally block
C++/CLI adds a new construct to traditional C++ exception handling: the finally block. The purpose
of this block is to let you clean up after an exception has occurred, and the following short exercise
shows how it works.

1.	 Continue using the project from the previous exercise.

2.	 Modify the main function so that it looks like the following, adding a finally block after the
catch block:

Console::WriteLine("Throw Test");

try
{
 int n = 3;
 Console::WriteLine("Calling with n=3");
 func(n);
 Console::WriteLine("Calling with n=0");
 n = 0;
 func(n);
}
catch(System::ArgumentException ^ex)
{
 Console::WriteLine("Exception was {0}", ex);
}
finally
{
 Console::WriteLine("This is the finally block");
}

Console::WriteLine("All done");

If you try executing the code, you’ll find that the finally block is executed after the catch block.

3.	 Modify the main function so that the second call doesn’t cause an exception, either by chang-
ing the value or by commenting it out. When you run the application again, you’ll see that the
finally block is still executed, even though there was no error.

The purpose of this block is to ensure that if you do something in the try block—such as opening a
file or allocating some memory—you’ll be able to tidy up whether an exception occurs or not because
the finally block is always executed when execution leaves a try block. This construct gives you a way
to clean up what might otherwise require duplicate code.

	 Chapter 11  Exception handling    189

The catch(…) block
Standard C++ has a construct that can be used to catch any exception that goes past. Here’s how it
works:

try
{
 // do some arithmetic operation
}
catch(System::ArithmeticException ^pex)
{
 // handle this exception
}
catch(...)
{
 // handle any exception
}

If an exception doesn’t match the first catch block, it will be caught by the second one, no mat-
ter what type it is. The problem is that you lose any information about the exception, because the
catch(...) block doesn’t have an argument.

Note  Even though you can’t tell what kind of exception you are handling inside a catch(…)
block, if you rethrow from within the block, a properly typed object will be thrown to han-
dlers higher in the call stack.

If you want this functionality when using C++/CLI, use a catch block that has an Exception^ as its
argument, which will catch any managed exception object.

Creating your own exception types

You’ve already seen how all the exception types are derived from the System::Exception class. If you
can’t find one that suits your needs in the standard exception hierarchy, you can easily derive your
own class from Exception and use it in your code. The following exercise shows you how to derive a
new exception class and how to use it in code.

1.	 Create a new CLR Console Application project named OwnException.

2.	 Add the following class definition immediately after the using namespace System; line:

// User-defined exception class
ref class MyException : System::Exception
{
public:
 int errNo;
 MyException(String ^msg, int num) : Exception(msg), errNo(num) {}
};

190   Microsoft Visual C++/CLI Step by Step

This custom exception class is a managed class that inherits from System::Exception, and it
extends Exception by adding a single field to hold an error number. The class constructor takes
a message and a number, and passes the message string back to the base class.

Note  I’ve made the errNo field public. Although you’re normally advised to make all
data members of classes private, you can make a case for having public data mem-
bers in certain circumstances. After you’ve created an Exception object and passed it
back to the client, do you care what the client does with it? Exceptions are “fire and
forget” objects, and you’re normally not concerned with the integrity of their state
after they leave your code in a throw statement.

3.	 Add the following function definition immediately after the class definition:

void func(int a)
{
 try
 {
 if (a <= 0)
 throw gcnew ArgumentException("Argument <= 0");
 }
 catch(System::ArgumentException ^ex)
 {
 Console::WriteLine("Caught ArgumentException in func()");
 throw gcnew MyException(ex->Message, 1000);
 }
}

The function checks its argument and throws a System::ArgumentException if it finds a nega-
tive value. This exception is caught locally, and a message is printed. Now, I decide that I really
want to handle the exception elsewhere, so I create a new MyException object and throw it,
initializing it with the message from the original ArgumentException.

4.	 Test the exception handling by calling the function in the application's main routine.

int main()
{
 Console::WriteLine("Custom Exceptions");
 try
 {
 func(0);
 }
 catch(MyException ^ex)
 {
 Console::WriteLine("Caught MyException in main()");
 Console::WriteLine("Message is '{0}'", ex->Message);
 Console::WriteLine("ErrNo is {0}", ex->errNo);
 }

 return 0;
}

	 Chapter 11  Exception handling    191

Calling the function with a 0 value triggers the exception, which is handled in the function
itself, and the exception is then rethrown to be handled in the main function. You can see in
the following screen shot how the exception has been caught in both places.

Using safe_cast for dynamic casting

C++ supports casting, which is when you instruct the compiler to convert one type to another for use
in an expression. Although casting can be useful, it can also be dangerous because you’re overriding
what the code would naturally direct the compiler to do. The safe_cast keyword was introduced in
C++/CLI to help make the operation safer. The following code fragment shows how some conversion
operations can be unsafe:

// Define the Vehicle and Car classes
ref class Vehicle {};
ref class Car : Vehicle {};
ref class Truck : Vehicle {};
ref class Bus : Vehicle {};
...
Car ^pc = gcnew Car(); // Create a Car
Vehicle ^pv = pc; // Point to it using a Vehicle handle - OK
...
Car ^pc2 = pv; // Copy pv into another Car^ handle - not OK!

The compiler raises an error on the last line, complaining that it can’t convert a Vehicle^ to a Car^.
The problem is that a Vehicle handle could point to any object derived from Vehicle such as a Truck
or a Bus. Implicitly casting from a Car to a Vehicle is fine because a Car is a Vehicle; going the other
way doesn’t work because not every Vehicle is a Car. One way around this issue is to use the safe_cast
construct, such as in the following:

try
{
 Car ^pc2 = safe_cast<Car^>(pv);
}
catch(System::InvalidCastException ^pce)
{
 Console::WriteLine("Cast failed");
}

At run time, safe_cast checks the object on the other end of the handle to see if it has the same
type as the object to which you’re trying to cast. If it does, the cast works; if it doesn’t, an Invalid
CastException is thrown.

192   Microsoft Visual C++/CLI Step by Step

Note  Experienced C++ programmers will realize that safe_cast is very similar to the
dynamic_cast construct supported by standard C++. The difference is that safe_cast throws
an exception if the cast fails, whereas dynamic_cast returns a null value.

Using exceptions across languages

One of the great things about managed exceptions in C++/CLI is that they work across languages, so
now you can, for example, throw an exception in C++/CLI and catch it in a Visual Basic application. No
longer are exceptions simply a C++ feature, and this ability to harmonize error handling across code
written in different languages makes mixed-language programming much easier than it has been in
the past.

Note  In .NET you should throw exception objects that derive from System::Exception.
Standard C++ allows you to throw and catch any kind of value, such as ints and doubles. If
you do this and the exception is thrown to non-C++ code, your value will be wrapped in a
RuntimeWrappedException object.

In the final example in this chapter, you will create a C++ class in a dynamic-link library (DLL) and
then use the class in a Visual Basic.NET application.

Note  You will need to have Visual Basic.NET installed to complete the second part of this
example.

1.	 Start Visual Studio 2012 and open a new Visual C++ project. This time, choose a Class Library
project from the CLR section: this is used when you want to create a DLL rather than an EXE. I
called the project MyClass; you can name it what you like, but make a note of the name.

You’ll find that you’ve created a project that defines a namespace called MyClass, containing
a single class called Class1. It’s this class that you’ll edit, adding a method that can be called
from a Visual Basic client.

2.	 The project will contain a number of files, among them MyClass.h and MyClass.cpp, which are
used to hold the definition and implementation of the Class1 class. Open MyClass.h and add
the Test function so that it looks like the following code:

// MyClass.h

#pragma once

using namespace System;

	 Chapter 11  Exception handling    193

namespace MyClass
{
 public ref class Class1
 {
 public:
 void Test(int n)
 {
 if (n < 0)
 throw gcnew ArgumentException(
 "Argument must be positive");
 }
 };
}

The Test method should look familiar by now: it simply checks its argument and throws an
exception if it’s less than 0.

3.	 Build the project.

You end up with a DLL called MyClass.dll being created in the project’s Debug directory.

4.	 Close the project (by clicking Close Solution on the File menu) and create a new Visual Basic
Console Application project named Tester. Before you can use the DLL you just created, you
have to add a reference to it to the project. To do so, open Solution Explorer (using the Solu-
tion Explorer item on the View menu if it isn’t visible) and right-click the project name.

5.	 On the shortcut menu that appears, click Add Reference. In the Reference Manager dialog box
that opens, click Browse and search for the DLL you built in step 3. Ensure that it’s added to
the Selected Components pane and then click OK.

194   Microsoft Visual C++/CLI Step by Step

6.	 Add the code to the project. Open Module1.vb and edit the Main function so that it looks like
the following code:

' Application to demonstrate cross-language exception handling
Imports [MyClass]

Module Module1
 Sub Main()
 Dim obj As New Class1()

 Try
 obj.Test(-1)
 Catch ex As ArgumentException
 Console.WriteLine("Exception: " & ex.Message)
 End Try

 Console.WriteLine("All done")
 End Sub
End Module

The first line imports the MyClass namespace into the application. This line does the same
job as using namespace does in C++, so you don’t have to fully qualify the name Class1 when
it appears. The first line in the Main function creates a new Class1 object; this is equivalent
to creating an object in C++ by using gcnew. The call to the Test function is enclosed in a Try
and Catch construct, and you can see the similarity between the way exceptions are handled
in Visual Basic and C++. The main difference is that in Visual Basic, the Catch blocks are inside
the Try block.

	 Chapter 11  Exception handling    195

Note  Even if you don’t know Visual Basic, it should be obvious that the structure
of the code is quite similar to C++/CLI, and you are using exactly the same .NET
Framework types.

7.	 Build the application and execute it.

Passing –1 through as the argument triggers the exception, and you should see the message
printed out in the Catch block.

Quick reference

To Do this

Generate an exception. Use the throw keyword, using a handle to a managed
type as the argument. For example:

throw gcnew SomeException();

Catch an exception. Use the try/catch construct, surrounding the code that
might fail with a try block, followed by one or more catch
blocks. Remember that you catch exceptions by refer-
ence, so you must use a handle. For example:

try {
 // code that might fail
}
catch(SomeException ^se)
{
 // handle the exception
}

Catch more than one exception. Chain catch blocks together. For example:

catch(SomeException ^ex)
{
 // handle the exception
}
catch(SomeOtherException ^ex2)
{
 // handle the exception
}

Catch a family of exceptions. Use the base class of the exceptions that you want to
catch in the catch block; for example, ArithmeticException
will catch DivideByZeroException and several others.

Catch every exception. Use a catch block that takes Exception^ as a parameter,
which will catch every type that is derived from Exception.

Handle exceptions at more than one point in a program. Use throw to rethrow exceptions from one catch block to
another.

Create your own exceptions. Derive from the Exception class, adding your own
members.

		 197

C H A P T E R 1 2

Arrays and collections

After completing this chapter, you will be able to:

■■ Implement arrays in C++.

■■ Create single-dimensional and multidimensional arrays.

■■ Create and use managed arrays.

■■ Understand what generic types are.

■■ Use the features of the System::Array class.

■■ Use the collection classes provided by the .NET Framework.

■■ Describe what the STL/CLR library is.

This chapter concerns itself with data structures. You’ll learn about arrays and other collection
classes, and you’ll learn how to use them in your applications. In the first part of the chapter,

you’re going to learn about two sorts of arrays: the native arrays provided by the C++ language, and
the Microsoft .NET managed arrays, which use functionality inherited from the .NET Framework.

The second part of the chapter looks more widely at the range of collection classes provided by
the .NET Framework, discussing their characteristics and showing you how and when to use them. The
chapter concludes with a brief introduction to the STL/CLR library.

Native C++ arrays

Native arrays are those provided as part of the C++ language, and they are based on the arrays that
C++ inherited from C. Although native arrays are designed to be fast and efficient, there are draw-
backs associated with using them, as you’ll see shortly.

This first exercise introduces you to C++ native arrays by showing you how to create an array of
value types and how to use the array.

1.	 Start Microsoft Visual Studio 2012 and create a new CLR Console Application project named
TradArray.

198   Microsoft Visual C++/CLI Step by Step

2.	 Open the source file Trad.cpp and edit the main function to match the following:

const size_t SIZE = 10;

int main(array<System::String ^> ^args)
{
 Console::WriteLine("Traditional Arrays");

 // Create an array
 int arr[SIZE];
 Console::WriteLine("Size in main: {0}", sizeof(arr));

 // Fill the array
 for(size_t i=0; i<SIZE; i++)
 arr[i] = i*2;

 return 0;
}

The first line declares a constant that represents the size of the array. Using symbolic constants
in this fashion is preferable to using the integer literal “10” in the code. Not only does it make
explicit just what the 10 represents, but should you want to change the size of the array, you
only have to change the value in one place.

The type size_t is a typedef for unsigned int. This is used where you want to denote sizes,
dimensions, or quantities. It is good practice to use size_t rather than int. Also note the wide-
spread convention of using capitalized names for constants.

The array is created by specifying a type, a name, and a size enclosed in square brackets ([]).
Here, the array is named arr, and it holds ten int values. All arrays are created by using the
same syntax, as shown here:

// Create an array of six doubles
double arr[6];
// Create an array of two char*'s
char* arr[2];

Here’s the first important point about native arrays: after you’ve created an array, you can’t
resize it, so you need to know how many elements you require before you start. If you don’t
know how many elements you’re going to need, you might be better off using a .NET collec-
tion, which is discussed later in this chapter.

Note  The array size has to be known at compile time, so, for example, you can’t
ask the user for a value and then use that value to specify an array dimension at
run time. However, it’s common to create constants, either by using preprocessor
#define declarations or by declaring const variables, and using them to specify array
dimensions.

	 Chapter 12  Arrays and collections    199

As you can see from the loop in the preceding code, array elements are accessed by using
square brackets that contain the index. Here’s the second important point about native arrays:
indexing starts at zero rather than one, so the valid range of indices for an array is from zero
to one less than the size of the array. In other words, for a 10-element array, valid indices are
[0] to [9].

3.	 Add a second loop to print out the array’s contents after filling it.

// Print its contents
for(size_t j=0; j<10; j++)
 Console::WriteLine(arr[j]);

4.	 Build and run the application.

The values print, one to a line, as shown in the following screen shot, and you also see that the
size of the array is 40, representing 10 ints of 4 bytes each:

What happens if you change the range of the second loop so that it tries to print the element
at [10]?

5.	 Alter the code in the second loop to look like the following:

// Print its contents
for(size_t j=0; j<=10; j++)
 Console::WriteLine(arr[j]);

Notice the less-than-or-equal-to (<=) condition. The effect of this condition is to try to print
11 elements rather than 10. Compile and run the program, and you should see output similar
to the following:

Notice the random value that’s been printed at the end of the list. Here’s the third important
point about native arrays: bounds aren’t checked. Native arrays in C++ aren’t objects, and
therefore they have no knowledge of how many elements they contain. It’s up to you to
keep within the bounds of the array; if you don’t, you risk corrupting data or crashing your
application.

200   Microsoft Visual C++/CLI Step by Step

Passing arrays to functions
Passing arrays to functions introduces a complication because the function has no knowledge about
the size of the array it has been passed. As you’ll see shortly, when you pass an array to a function,
you pass only the starting address, which means that you have to figure out some way of passing the
size information along with the array when you call the function. Normally this is accomplished in one
of two ways:

■■ Pass the size as an explicit parameter to the function call.

■■ Ensure that the array is always terminated by a unique marker value so that the function can
determine when the end of the data has been reached.

How do native arrays work?
A native array in C++ isn’t an object; it’s simply a collection of values strung together in mem-
ory. So, a 10-element array of integers consists of 10 integers, one after the other, in memory.
The name of the array represents the address of the first element, so when you declare an array
like this:

int foo[10];

you’re instructing the compiler to reserve memory large enough to hold 10 integers and
return you the address as foo. When you access an array element, you’re actually specifying the
offset from this address; thus, foo[1] means “offset one int from the address foo, and use what
is stored there.” This explains why array indexing starts from 0: an index of 0 denotes an offset
of zero from the start address, so it means the first element.

As soon as the compiler has allocated the space, it works from that point forward relative to
this starting address. When you provide an offset in terms of an array index, the compiler gen-
erates code to access that piece of memory. And, if you have it wrong and stepped outside the
bounds of the allocated memory, you can end up reading or writing somewhere inappropriate.

Although this might seem dangerous—and indeed, it is—in fact, it is sometimes both
desirable and necessary behavior, for reasons that unfortunately I have neither the time nor
space to explain in proper detail here. Trying to read or write off the end of an array is called a
buffer overrun. This has been the cause of many serious bugs in C and C++ applications. Some
malicious individuals have used these bugs to create attacks against applications, and there are
many well-documented exploits that use buffer overruns. Tools do exist to check that applica-
tions aren’t misbehaving, but they can’t catch everything, and so you have to be very careful to
check your use of array indices.

	 Chapter 12  Arrays and collections    201

Let’s investigate passing an array to a function.

1.	 Continue with the project from the previous exercise.

2.	 Add the following function definition immediately after the using namespace System; line:

void func(int arr[], size_t size)
{
 Console::WriteLine("Size in func: {0}", sizeof(arr));
 for(size_t i=0; i<size; i++)
 Console::WriteLine(arr[i]);
}

The first argument to the function alerts the compiler that the address of an array is going to
be passed, which is equivalent to passing a pointer. It’s very common to see int* used, instead.
The second argument passes the size of the array—in effect, the amount of memory pointed
to by the first argument. The function prints out the array by using the size, just as before.

3.	 Call the function from the main routine, as shown here:

func(arr, 10);

What if the array size needs to be changed at some point? You can make your code more
robust by calculating the number of elements in the array automatically by using the sizeof
operator, like this:

func(arr, sizeof(arr)/sizeof(arr[0]));

The sizeof operator returns the size of its argument in bytes, where the argument can be a
variable name or a type name. Using sizeof on an array returns the total size of the array in
bytes, in this case, 40 bytes. When divided by the size of one element—4 bytes—you’re left
with the number of elements in the array.

4.	 Build and run the application.

The right values print out as well as the fact that the array is of size 4 bytes. This reflects the
fact that it is passed to the function as a pointer.

202   Microsoft Visual C++/CLI Step by Step

Initializing arrays
It’s possible to initialize arrays at the point of declaration, as shown in the following syntax fragment:

int arr[4] = { 1, 2, 3, 4 };

The values to be used for initialization are provided as a comma-separated list in braces ({}) on the
right side of an assignment; these values are known as an aggregate initializer. The compiler is clever
enough to figure out how many values are in the list, and it will dimension the array to fit if you don’t
provide a value.

// Dimension the array automatically
int arr[] = { 1, 2, 3, 4 };

If you give a dimension and then provide too many values, you’ll get a compiler error. If you don’t
provide enough values, the initial values you give will be used to initialize the array starting from ele-
ment zero, and the remaining elements will be set to zero.

Multidimensional arrays
Multidimensional arrays in C++ are an extension of the single-dimensional variety. The following
short exercise shows how to create and use a two-dimensional array.

1.	 Create a new CLR Console Application project named MultiD.

2.	 Open the source file MultiD.cpp and add the following code to the main function:

int main(array<System::String ^> ^args)
{
 Console::WriteLine("Multidimensional Arrays");

 // Create a 2D array
 int arr[2][3];

 // Fill the array
 for(int i=0; i<2; i++)
 for(int j=0; j<3; j++)
 arr[i][j] = (i+1)*(j+1);

 return 0;
}

Observe that a two-dimensional array is declared by using two sets of square brackets. You
don’t put the two values inside one set of brackets, as you do in many other languages,
and for higher-order arrays, you simply add more sets of square brackets. As with single-
dimensional arrays, you have to provide the size at compile time, and the indices of each
dimension vary from zero to one less than the declared size. Array elements are also accessed
by using two sets of square brackets.

	 Chapter 12  Arrays and collections    203

3.	 Print out the array by using an extension of the method for printing out the elements of the
single-dimensional array, as follows:

// Print the array content
for(int i=0; i<2; i++)
{
 for(int j=0; j<3; j++)
 Console::Write("{0} ", arr[i][j]);

 Console::WriteLine();
}

Notice that one row of the array is printed on one line. The inner loop prints a single
row by using repeated calls to Console::Write. After each row has been output, a call to
Console::WriteLine outputs a new line.

To pass a multidimensional array to a function, use two empty sets of square brackets (for example,
int arr[][]) and specify the dimension information, as before.

Dynamic allocation and arrays
So far, all arrays in this chapter have had a fixed size allocated at compile time. It is possible—and very
common—to create arrays dynamically at run time by using the new operator. The array you create
still has a fixed size, but this size can be specified at run time when you know how many elements you
need. The following exercise shows how to create an array dynamically and then use it.

1.	 Create a new CLR Console Application project named Dynamic.

2.	 Open the source file Dynamic.cpp and edit the main function as shown:

const size_t SIZE = 10;

int main(array<System::String ^> ^args)
{
 Console::WriteLine("Dynamic Arrays");

 // Create an array dynamically
 int *pa = new int[SIZE];

 // Fill the array
 for(size_t i=0; i<SIZE; i++)
 pa[i] = i*2;

 // Print the array content
 for(size_t j=0; j<SIZE; j++)
 Console::WriteLine(pa[j]);

 // Get rid of the array once we're finished with it
 delete [] pa;

 return 0;
}

204   Microsoft Visual C++/CLI Step by Step

You’ve previously used the gcnew operator to create .NET reference types; the new operator is
used in traditional C++ code in a similar way to allocate memory dynamically at run time. The
syntax is new, followed by the type of the array and then the dimension enclosed in square
brackets. After the array has been created, you’re returned a pointer to the start of the array.
Pointers work in a similar way to handles, but they use an asterisk (*) instead of a caret.

You can see that dynamic arrays are accessed in exactly the same way as statically allocated arrays,
using the square-bracket notation. This use of a pointer with array notation underlines the relation-
ship between pointers and arrays, as explained in the sidebar “How do native arrays work?” earlier in
this chapter.

Notice the call to delete just before the program exits. Allocating an array dynamically in tradition-
al C++ doesn’t create a managed object, so there is no garbage collection associated with this array.
Therefore, to use memory efficiently, you must remember to deallocate memory as soon as you’ve
finished with the array. There are two versions of delete: one to delete single objects (delete), and one
for arrays (delete []).

When deleting an array, you need to use the delete [] version. If you forget the square brackets,
your application might well still run, but according to the standard, the result of calling single-ele-
ment delete on an array is undefined.

Strictly speaking, the call is unnecessary here because all allocated memory is freed up when the
application exits. However, in any real-world application, you need to manage your memory carefully
to ensure that all memory is freed up at an appropriate point.

Note  After you’ve called delete on a pointer, you must not use the pointer again, because
the memory it points to is no longer allocated to you. If you try to use a pointer after free-
ing up the memory it points to, you can expect to get a run-time error.

	 Chapter 12  Arrays and collections    205

Problems with manual memory management
Manual memory management is widely considered to be the single biggest cause of bugs in C
and C++ programs, and it’s the driving force behind the development of the garbage-collection
mechanisms in languages such as C# and Java. If it’s up to the programmers to call delete on
every piece of memory they allocate, mistakes are going to be made.

There are two main problems associated with manual memory management:

■■ Not freeing up memory  If you don’t free up memory when you have finished with it,
you create a memory leak. Although this problem is normally the less serious of the two,
it results in an application taking up more memory than it needs. In extreme cases, the
amount of extra memory consumed by an application can reach the point where it begins
to interfere with other applications or even the operating system.

■■ Freeing up memory inappropriately  In a complex application, it might not be obvi-
ous where a particular piece of memory should be freed up or whose responsibility it is to
free it. If delete is called too soon and another piece of code tries to use the dynamically
allocated array, you can expect a run-time error. The same is true if anyone attempts to
call delete on the same pointer more than once.

Although manual memory allocation using new and delete makes it possible for you to man-
age memory very precisely, these two problems were the impetus behind the development of
garbage collectors, which make the system track the use of dynamically allocated memory and
free it up when no one else is using it.

Generic types

Before we talk about the .NET array and collection classes, we need to introduce the concept of
generic types. This is a complex topic, and we cannot cover it in great depth, but this section provides
enough detail for you to understand why generic types are useful and how they work. You will also
find that you use generic types far more often than you create them, so I will focus on how to use the
generic types you will encounter in .NET.

206   Microsoft Visual C++/CLI Step by Step

Perhaps the easiest way to introduce generic types is through an example. Suppose that you want
to create a class that will hold a list of object handles. When you begin designing the class, you will
soon realize that it doesn’t matter what type the objects in the list are, as long as they are ref types
and you can get a handle to them. A list of String^ will work in exactly the same way as a list of
Person^ or a list of Vehicle^. In fact, you can say that your list class will work with T^, where T is any
reference type.

This is what generic types give you the flexibility to do. You can write a class in terms of T^, and
only decide what T is going to be when you use it. Here is what a (very) partial definition of such a
generic list class might look like:

generic <typename T>
ref class MyList
{
public:
 void Add(T obj);
 T GetAtIndex(int idx);
 ...
};

The class definition begins with the generic keyword, which alerts the compiler that you’re starting
a generic type. The <typename T> then informs the compiler that T is a type parameter, a placeholder
that will be filled in later and which must be the name of a type. You can then implement the class in
terms of T, using it in member declarations, and for function parameter and return types.

Note  It is possible (and quite common) for a generic type to have more than one type
parameter. For example, a dictionary of key/value pairs will have one parameter for the
key type and a second for the value type, which would be denoted by <typename K,
typename V>.

To use this type in code, you need to specify to the compiler what T will be by providing as a type
name in angle brackets:

MyList<String^> ^listOfString = gcnew MyList<String^>();

This line informs the compiler that we want a list of String^, and the compiler will ensure that the
object will only work with String^. Any attempt to add another type results in a compile-time error.
The types created from a generic type by specifying a type parameter are called constructed types.

Note  When this code is compiled, a generic version of the class is added to the assembly,
and constructed types are created at run time, as needed. This is important because it
means that it is not necessary to know when compiling the original MyList<T> code what
types it will be used with at run time.

	 Chapter 12  Arrays and collections    207

Managed arrays

The .NET Framework library contains an array class that provides a managed equivalent of a standard
C++ array but without the disadvantages. A managed array is an object that is allocated on the man-
aged heap and subject to the normal garbage-collection rules.

Note  Unlike standard C++ arrays, indexing is not just a way of specifying an offset from an
address.

Creating a managed array is quite different from creating a standard C++ array. You declare a
managed array by using the array keyword, as in the following examples:

array<int> ^arr1;
array<double, 2> ^arr2;
array<Person^> ^arr3;

Observe that all of these are declared as handles. This is because an array is a managed object, and
you always interact with arrays through handles. So, arr1 is a handle to a 1D array of integers; arr2 is a
handle to a 2D array of doubles; and arr3 is a handle to an array of Person handles.

Note  The <> syntax indicates that the array is a generic type. The array class is written so
that it can represent an array of any type of object, and you specify the type it is to contain
in angle brackets at the time of declaration.

The general syntax for declaration is

array<type, rank> handle_name;

where rank is the number of dimensions (although for a 1D array, you can omit the rank). So, we
could declare some arrays as follows:

array<int> ^intArray = gcnew array<int>(5);
array<String^> ^stringArray = gcnew array<String^>(10);

The first line declares an array of 5 ints, whereas the second declares an array of 10 String handles.
You might recognize this second type from the main function that you’ve seen in all the examples.

This exercise shows you how to create and iterate over an array of ints.

1.	 Create a new CLR Console Application project named IntArray.

2.	 Add the following code to main to create an array of ints and then fill it with some squares:

array<int> ^intArray = gcnew array<int>(5);
for (int i=0; i<intArray->Length; i++)
 intArray[i] = i*i;

208   Microsoft Visual C++/CLI Step by Step

Notice how you access the array elements by using the square-bracket notation, with the
index starting at zero, just as in traditional arrays. There is no reason why indexing must start
from zero, but it is traditional for languages in the C family.

3.	 Add another loop to print out the values.

for (int i=0; i<intArray->Length; i++)
 Console::WriteLine("Element {0} is {1}", i, intArray[i]);

4.	 Build and run the application, and verify that the values are printed.

5.	 Modify the loop so that it tries to read off the end of the array.

for (int i=0; i<intArray->Length+1; i++)

6.	 Build and run the application again.

This time you should get an exception because the array object knows how many elements it
has, and it won’t let you try to access an element that doesn’t exist.

This is an important difference between traditional and managed arrays. The managed array
is holding a set of values for you, knows exactly how many it has, and isn’t going to let you
access an element that doesn’t exist.

Initialization
You saw earlier how a traditional C++ array can be initialized by using an aggregate initializer. You can
do the same with managed arrays, so we can write the following:

array<int> ^intArray = gcnew array<int>(3) { 1, 2, 3 };

As you might expect, the compiler is clever enough to work out the size of the array from the
initializer, so you can omit the dimension, as demonstrated in the following:

array<int> ^intArray = gcnew array<int>() { 1, 2, 3 };

And, just like traditional arrays, you can omit the entire gcnew expression because the compiler
knows from the left side of the statement that you want an array<int>, as illustrated here:

array<int> ^intArray = { 1, 2, 3 };

Arrays and reference types
Arrays of reference types are slightly different to arrays of value types. Remember that reference
types are always accessed through a handle. This means that an array of reference types is actually
going to be an array of handles.

	 Chapter 12  Arrays and collections    209

You can see this by examining the main function of any application you’ve written so far. If you
look at the definition of main, the first line should look like this:

int main(array<System::String ^> ^args)

The args argument is a handle to an array of String handles, and you will become very accustomed
to seeing this “double caret” pattern as you work with managed arrays.

The following exercise shows you how to create and use an array of reference types. In this ex-
ample, you will use the System::String class, but you can easily substitute a reference type of your own.

1.	 Create a new CLR Console Application named RefArray.

2.	 Edit the main function to match the following:

const size_t SIZE = 5;

int main(array<System::String ^> ^args)
{
 Console::WriteLine("Arrays of Reference Types");

 // Create an array of String references
 array<String ^> ^arr = gcnew array<String ^>(SIZE);

 // Explicitly assign a string to element zero
 arr[0] = gcnew String("abc");

 // Implicitly assign a string to element one
 arr[1] = "def";

 // Print the content
 for (size_t i=0; i<SIZE; i++)
 if (arr[i] == nullptr)
 Console::WriteLine("null");
 else
 Console::WriteLine(arr[i]);
 }

3.	 Compile and run the application, ensuring that the values are printed as you expected.

You should see two strings printed first, followed by three nulls. This is because the array
object sets the String handles to null when it is created, and you have only assigned to two of
them.

You can also use an aggregate initializer with reference types, so you could have initialized the
array like this:

array<String ^> ^arr = gcnew array<String^>(SIZE) {
 gcnew String("abc"),
 gcnew String("def") };

210   Microsoft Visual C++/CLI Step by Step

Using the for each loop with arrays
In .NET code, there is a better way to iterate over arrays than using a counted for loop: the for each
loop. With for each, you can iterate over a collection without having to maintain a counter. Here’s
what a for each loop looks like:

for each (String ^s in arr)
{
 // use s
}

Each time around the loop, an element from the array is assigned to the String s, so that you can
use it within the body of the loop. You do not have to know how big the array is, and don’t have to
initialize and maintain a counter. Not having to do this means that there is less chance to get an off-
by-one error in your code.

There is another advantage to using the for each loop that might not be immediately apparent.
This loop doesn’t only work with arrays; it works with any collection that implements the IEnumerator
interface. This means that you can use the same programming construct to iterate over very different
kinds of collection.

Enumerators
Enumerators are the .NET implementation of the Iterator design pattern, which provides an
abstract way to iterate over any collection. In .NET, arrays and other collection types do this by
implementing the IEnumerator interface, which has the following three members:

■■ The MoveNext method, which moves to the next element in the collection, returning false
when there are no more

■■ The Current property, which returns the item currently being pointed to by the
enumerator

■■ The Reset method, which resets the pointer to just before the start

When you create an enumerator, it is positioned just before the first element. Calling
MoveNext until it returns false is guaranteed to visit each element in the collection once,
although with some collections, the order of traversal is not guaranteed.

Using an enumerator means that you do not have to be concerned with the underlying col-
lection type, meaning (for instance) that the implementation could be changed to use a linked
list rather than an array, and the calling code would not have to change.

Note, however, that you can only read collections through an enumerator. If you want to
modify elements while you traverse the collection, you will have to use a counted for loop.

	 Chapter 12  Arrays and collections    211

This short exercise shows you how to use a for each loop:

1.	 Continue with the project from the previous exercise.

2.	 Modify the code that prints out the contents of the array to use a for each loop:

for each (String ^s in arr) {
 if (s == nullptr)
 Console::WriteLine("null");
 else
 Console::WriteLine(s);
}

3.	 Build and run the application to ensure that you see the same output.

Multidimensional arrays
Just as in standard C++, you can create multidimensional arrays in C++/CLI. Unlike standard C++,
however, you don’t provide extra pairs of square brackets, but instead specify the dimension inside
the angle brackets. For example, here is how you would declare a two-dimensional array of ints:

array<int,2> ^array2D = gcnew array<int,2>(3, 3);

Because you have two dimensions, you need to specify two values in the constructor to set the
values for each dimension.

You also obviously need to give two values when specifying an element in a 2D array, but in C++/
CLI, you place both inside a single pair of square brackets:

array2d[1,1] = 7;

As you would expect, indexes start from zero in all dimensions, and you can generalize the cre-
ation and use of these arrays to any number of dimensions you like.

You can use aggregate initializers with multidimensional arrays, and you use nested curly brackets
to show which values belong to which row of the array:

array<int, 2> ^array3d = {
 { 1, 2, 3 },
 { 4, 5, 6 },
 { 7, 8, 9 }
};

212   Microsoft Visual C++/CLI Step by Step

The .NET array class

Managed arrays in the .NET Framework all inherit from System::Array, which means that every man-
aged array has a number of useful properties and methods. These properties and methods are
summarized in the following two tables.

Property Description

IsFixedSize Returns true if the array has a fixed size. Always returns
true, unless overridden by a derived class.

IsReadOnly Returns true if the array is read-only. Always returns false,
unless overridden by a derived class.

IsSynchronized Returns true if the array is thread-safe (synchronized).
Always returns false, unless overridden by a derived class.

Length Returns the total number of elements in all dimensions of
the array as a 32-bit integer.

LongLength Returns the total number of elements in all dimensions of
the array as a 64 bit integer.

Rank Returns the number of dimensions in the array.

SyncRoot Returns a pointer to an object that can be used to syn-
chronize access to the array.

Method Description

AsReadOnly Returns a read-only wrapper for an array.

BinarySearch Static method that searches a single-dimensional array for
a value by using a binary search algorithm.

Clear Static method that sets all or part of an array to zero or a
null reference.

Clone Creates a shallow copy of the array.

Copy Static method that copies all or part of one array to an-
other array, performing type downcasting as required.

CopyTo Method that copies all or part of one single-dimensional
array to another.

Exists Determines whether the array contains elements that
match a condition.

Find Return the first element of the array that matches a
condition.

FindAll Return all the elements of the array that match a
condition.

FindLast Return the last element of the array that matches a
condition.

ForEach Performs an action on each element of the array.

GetEnumerator Returns an enumerator for the array. See the section
“Using enumerators” later in this chapter for details.

GetLength Returns the number of elements in a specified dimension
as an integer.

GetLowerBound Returns the lower bound of a specified dimension as an
integer.

	 Chapter 12  Arrays and collections    213

Method Description

GetUpperBound Returns the upper bound of a specified dimension as an
integer.

GetValue Returns the value at a specified position in a single-
dimensional or multidimensional array.

IndexOf Static method that returns the index of the first occur-
rence of an element in an array or a part of an array.

Initialize Initializes an array of value types by calling the default
constructor of the value type. This method must not be
used on arrays of reference types.

LastIndexOf Static method that returns the index of the last occur-
rence of an element in an array or a part of an array.

Resize Resize the array to the specified number of elements.

Reverse Static method that reverses the order of the elements in
all or part of a single-dimensional array.

SetValue Sets an array element to a specified value.

Sort Static method that sorts the elements in a single-dimen-
sional array.

TrueForAll Determines whether every element of the array matches
a condition.

Basic operations on arrays
Unlike traditional C++ arrays, managed arrays are objects, and they “know” how many dimensions
they have and how many elements they contain. The following exercise introduces you to some of the
basic functionality in the System::Array class.

1.	 Create a new CLR Console Application project named SysArray.

2.	 At the top of the main function, add declarations for some loop counters and a two-
dimensional array of 32-bit integers, as demonstrated in the following:

// Declare loop counters
int i,j,k;

// Create a multidimensional array of ints
array<int, 2> ^arr = gcnew array<int, 2>(3,2);

This is the array that you’ll use for exploring the features of the System::Array class in the rest
of this section.

3.	 Because this is a managed array, it inherits directly from System::Array, so you can use the
Rank and Length properties of the Array class to find out the rank (number of dimensions) and
total length of the array. Add the following code to the main function:

Console::WriteLine("Rank is {0}", arr->Rank);
Console::WriteLine("Length is {0}", arr->Length);

214   Microsoft Visual C++/CLI Step by Step

When you run this code, you should find that the rank is two and the total length is six, which
matches the declaration.

4.	 The GetLength method—not to be confused with the Length property—returns the size of
any one dimension of the array, so you can print out the sizes of each dimension, as presented
here:

// Print out the array dimension information
for (i=0; i<arr->Rank; i++)
 Console::WriteLine("Dimension {0} is of size {1}", i, arr->GetLength(i));

Now that you have an array and can find out how large each dimension is, you need to know
how to get and set elements in the array.

5.	 Add the following nested loops to the end of your code:

// Fill the array with values
for (j=0; j<arr->GetLength(0); j++)
 for (k=0; k<arr->GetLength(1); k++)
 arr[j,k] = (j+1)*(k+1);

The outer loop iterates over the rows, whereas the inner loop iterates over the columns, and
the [x,y] notation is used to reference the array elements. The Array class also has the SetValue
method, which provides an alternative way of setting values for those languages that don’t
support the array notation style of C++.

// Put '10' in array element [1,1]
arr->SetValue(10, 1, 1);

6.	 Print out the values in the array by using a similar pair of nested loops.

// Print out the array data
for (j=arr->GetLowerBound(0); j<=arr->GetUpperBound(0); j++)
 for (k=arr->GetLowerBound(1); k<=arr->GetUpperBound(1); k++)
 Console::WriteLine("pn[{0},{1}] = {2}", j, k, arr[j,k]);

Again, the outer loop iterates over the rows, and the inner loop iterates over the columns. In
this case, the GetLowerBound and GetUpperBound methods return the indices of the lower
and upper bounds. The argument to GetUpperBound and GetLowerBound is the dimension
of the array whose bound you want to find. In C++, the lower bound is invariably 0 and the
upper bound can be obtained by using the GetLength method, so these are mainly useful in
other languages for which it might be common to have arrays with arbitrary lower and upper
bounds.

7.	 Build and run the application. Check that the results are what you expect.

	 Chapter 12  Arrays and collections    215

More advanced array operations
You can now create arrays, find out how many dimensions they have and how large they are, and get
and set values. This section introduces some of the more advanced operations supported by the Array
class, such as copying, searching, and sorting.

Copying array elements
The following exercise shows you how to use the Copy method to copy part of one array to another.

1.	 Continue with the project from the previous exercise.

2.	 At the end of the main function, create a second two-dimensional array the same size and
type as the original.

// Create another multidimensional array of ints
array<int, 2> ^arr2 = gcnew array<int, 2>(3,2);

3.	 Add some code to fill the new array with a constant value.

// Fill the array with a constant value
for (j=0; j<arr2->GetLength(0); j++)
 for (k=0; k<arr2->GetLength(1); k++)
 arr2[j,k] = 47;

4.	 To copy some values over from the first array to the second, use the static Copy method.

// Copy two values from arr to arr2
System::Array::Copy(arr,0, arr2,2, 2);

Using this method, you can copy all or part of one array into another. The first two arguments
are the source array and the index from which to start copying. The second two are the desti-
nation array and the starting index at which elements are to be replaced. The final argument
is the number of elements to be copied. In this case, you’ve copied two elements from arr into
the middle of arr2, which you’ll be able to see if you add code to print the contents of arr2,
such as in the following example:

for(j=arr2->GetLowerbound(0); j<=arr2->GetUpperBound(0); j++)
 for(k=arr2->GetLowerbound(1); k<=arr2->GetUpperBound(1); k++)
 Console::WriteLine("pn[{0},{1}] = {2}", j, k, arr2[j,k]);

5.	 Build and run the application.

216   Microsoft Visual C++/CLI Step by Step

Searching
It’s common to want to search an array to see whether it contains a specific entry, and you can do so
by using the IndexOf and LastIndexOf methods.

1.	 Create a new CLR Console Application project named Strings.

2.	 Open the Strings.cpp source file and add the following code to the top of the main function to
create an array of strings:

// Create an array of strings
array<String ^> ^sa = { "Dog", "Cat", "Elephant", "Gerbil", "Dog",
 "Horse", "Pig", "Cat" };

// Check the length
Console::WriteLine("sa has length {0}", sa->Length);

3.	 The IndexOf and LastIndexOf functions both let you search to determine whether a particular
object occurs in the array. Add the following code to the main function:

// Search for a value
String ^s = "Dog";

int pos = Array::IndexOf(sa, s);
Console::WriteLine("Index of s in sa is {0}", pos);

// Search for the next occurrence
pos = Array::IndexOf(sa, s, pos+1);
Console::WriteLine("Next index of s in sa is {0}", pos);

The call to IndexOf finds the first occurrence of the string “Dog” in the array and returns its
index, which in this case is 0. The second call, to an overload of IndexOf, searches for an occur-
rence beginning at a given offset. Because the search is starting just past the first occurrence,
the index returned is that of the second occurrence, which is 4. A third overload lets you
search within a portion of the array.

Note  If the value isn’t found, the index returned will be one less than the lower
bound of the array, which in C++ will usually mean a value of –1.

LastIndexOf works in the same way as IndexOf, but it starts searching from the other end of
the array.

4.	 Build and run the application.

	 Chapter 12  Arrays and collections    217

Sorting
The static Array::Sort method and its overloads give you a way to sort an array or a part of an array,
whereas Array::Reverse lets you reverse the order of elements. Try adding the following code to the
main routine:

Array::Sort(sa);
Array::Reverse(sa);
for each (String ^s in sa)
 Console::WriteLine(s);

When you run the application, you should see the elements of the array printed in reverse order,
from Pig back to Cat.

One valuable overload to Sort makes it possible for you to provide two arrays, one of which con-
tains keys used to define the sort order. Here’s an exercise to show you how this works.

1.	 Continue with the project from the previous exercise.

The sa array currently contains the following entries:

Pig
Horse
Gerbil
Elephant
Dog
Dog
Cat
Cat

2.	 After the calls to Sort and Reverse, add a new array.

array<int> ^keys = { 6, 4, 3, 5, 2, 2, 1, 1 };

This array contains the keys that you’re going to use to sort the array of animal names. They
reflect my preferences—cats are number one, while pigs come in at number six—so feel free
to change them as you like.

3.	 Add another call to Sort, specifying both arrays.

Array::Sort(keys, sa);
Console::WriteLine("---Sorting with keys---");
for each(String ^s in sa)
{
 Console::WriteLine(s);
}

The keys array is sorted, and the elements in sa are sorted into exactly the same order. When you
run the code and print out the array, the elements will have been sorted from Cat to Pig.

218   Microsoft Visual C++/CLI Step by Step

The IComparable interface
Any type that wants to be used in the Sort method must implement the IComparable interface,
which has one member, CompareTo. When CompareTo is invoked on an object, it is passed a
reference to another object. The function returns 0 if the two instances are equal, a negative
value if the object passed in is greater than the instance calling the function, and a positive
value if the object passed in has a lesser value.

Using enumerators
You have already seen how you can use enumerators to iterate over any collection, and that they are
what makes for each loops work with collections. The GetEnumerator method on a collection returns
an enumerator that you can use to iterate over the elements of the collection.

In this next exercise, you’ll use an enumerator to list the elements in the String array.

1.	 Continue by using the Strings project; add the following using declaration after the using
namespace System; line:

using namespace System::Collections;

The IEnumerator interface is defined in the System::Collection namespace, so it’s easier to use
enumerators if you add a using declaration for the namespace.

2.	 Add the following code to the end of the main function:

Console::WriteLine("---Using Enumerator---");
IEnumerator ^ie = sa->GetEnumerator();
while (ie->MoveNext())
 Console::WriteLine(ie->Current);

3.	 Build and run the application.

You’ll notice several things about this code. To begin with, the enumerator starts off posi-
tioned before the first element, so you need to call MoveNext once to get to the first element.
When there are no more elements to retrieve, calls to MoveNext return false. The property
Current retrieves the current object but doesn’t move the pointer, so you’ll get the same
value back until you call MoveNext again. The Current property also returns a general Object
handle, so you’ll often need to cast this to the actual type of the object by using the C++
dynamic_cast or the .NET equivalent keyword, safe_cast. (See Chapter 11, “Exception han-
dling,” for details on how to use safe_cast.)

	 Chapter 12  Arrays and collections    219

What isn’t obvious from the preceding code is that the enumerator gets a snapshot of the
underlying collection. Enumerators are designed for read-only access to collections, and you
can have several independent enumerators active on the same collection at one time. If any
changes are made to the underlying collection, the snapshot will fall out of synchronization,
which causes the IEnumerator to throw an InvalidOperationException, alerting you that it no
longer reflects the underlying data.

Note  Any type that wants to provide enumerator access to its members must implement
the IEnumerable interface. This interface has the one method, GetEnumerator, which returns
a pointer to some object that implements the IEnumerator interface.

Other .NET collection classes

The System::Collections::Generic namespace contains several very useful collection classes that you can
use in C++ programs. Some of the most commonly used are listed in the following table. A couple of
them will be examined later in more detail to give you an idea of how they work.

Class Description

Dictionary<K,V> Stores a collection of key/value pairs as a hashtable

HashSet<T> A collection of unique values

LinkedList<T> A doubly-linked list

List<T> An expandable array

Queue<T> Stores a list of elements and accesses them in the same
order in which they were stored

SortedList<K,V> A collection of key/value pairs with which you can retrieve
elements by index as well as by key

Stack<T> Accesses a list of elements from the top only by using
Push and Pop operations

The List<T> class
The List<T> class, defined in the System::Collections::Generic namespace, is a dynamically expandable
(and shrinkable) array. By default, instances of this class are resizable and writable, but the class pro-
vides two static methods with which you can create read-only and fixed-size Lists.

Note  The non-generic version of the List is System::Collections::ArrayList. This class was in-
troduced before generics were added to .NET, and although it provides the same function-
ality, use of generic collections is preferred whenever possible because they are type-safe.

220   Microsoft Visual C++/CLI Step by Step

The following exercise shows you how to create a List and manipulate it.

1.	 Create a new CLR Console Application project named MyList.

2.	 Open the MyList.cpp source file and add the following line immediately after the using
namespace System; line:

using namespace System::Collections::Generic;

The List class is defined in the System::Collections::Generic namespace. By inserting a using
directive, you can use the name without having to fully qualify it every time.

3.	 Add the following code to the main function:

int main(array<String ^> ^args)
{
 Console::WriteLine("List Demo");

 // Create an empty List
 List<int> ^lst = gcnew List<int>();

 // Look at the count and capacity
 Console::WriteLine("Capacity={0}", lst->Capacity);
 Console::WriteLine("Count={0}", lst->Count);

 // Adjust the capacity
 lst->Capacity = 10;
 Console::WriteLine("Capacity={0}", lst->Capacity);

 // Add some elements
 lst->Add(0);
 lst->Add(2);
 lst->Add(3);
 lst->Insert(1, 1);
 Console::WriteLine("Count is now {0}", lst->Count);

 return 0;
}

The default List constructor creates an empty List. Because this is a generic type, you need to
specify the type that the List is to contain, in this case int.

The next two lines use the Capacity and Count properties to print the current capacity of the
List and a count of how many objects it currently contains. If you run this code, you’ll find
that the count is 0—not surprising because you haven’t added anything yet—and that the
capacity is also 0. Using the following alternative constructor, you can specify a different initial
capacity:

 // Create a List with a capacity of ten elements
 List<int> ^pal = gcnew List<int>(10);

	 Chapter 12  Arrays and collections    221

If you exceed the capacity when adding elements, it will automatically be doubled. If your ar-
ray is too large, you can reduce its capacity to match the actual number of elements stored by
calling TrimToSize. You can also reset the capacity of the List at any time by using its Capacity
property.

The List doesn’t contain any elements until you add some by using the Add or Insert functions.
Add appends a new item to the end of the list, whereas Insert takes a zero-based index and
inserts a new item at that position.

4.	 Because List implements IEnumerator, you can print out the contents of the List by using a
for each loop.

for each (int i in lst)
 Console::WriteLine(i);

5.	 The syntax for removing items from a List is similar to that used for retrieving them.

// Remove item at index 2
lst->RemoveAt(2);
Console::WriteLine("---Item removed---");
for each(int i in lst)
{
 Console::WriteLine(i);
}

If you want to remove more than one element, the RemoveRange function takes a starting in-
dex and a number of elements to remove. In addition, if you have stored a handle to an object
in the collection, you can use the Remove function, which will search the List and remove the
first occurrence.

6.	 Build and run the application.

Other list operations
The List<T> class implements the same interfaces as the System::Array class discussed earlier in the
chapter, which means that it provides much of the same functionality.

■■ The IList interface provides the Add, Clear, Contains, IndexOf, Insert, Remove, and RemoveAt
methods, plus the Item, IsFixedSize, and IsReadOnly properties.

■■ The ICollection interface provides the CopyTo method, plus the Count, IsSynchronized, and
SyncRoot properties.

■■ The IEnumerable interface provides the GetEnumerator method.

■■ The ICloneable interface provides the Clone method.

You use these interfaces to specify common functionality for the collection classes. After you know
how the interface methods work, it becomes easier to use other collection classes.

222   Microsoft Visual C++/CLI Step by Step

The SortedList<K,V> class
The SortedList<K,V> class, also defined in the System::Collections::Generic namespace, represents a
collection of keys and values. A SortedList is very similar to a Dictionary, which also maintains key/
value pairs, but the SortedList maintains its data in sorted-key order and allows you to access items
by index as well as by key.

SortedList sorts its entries two ways:

■■ The objects stored in the SortedList can implement the IComparable interface with its
CompareTo method. All the value types, such as number and string classes, implement this
interface, and you should implement it on any other user-defined types whose values can be
ordered.

■■ An external comparer object can be provided, which implements the IComparer interface with
its Compare method.

The following exercise shows you how to create a SortedList and manipulate it. As an example,
suppose you wanted to maintain a list of employees’ names together with their phone extensions. A
SortedList would work well in this case, using the name as the key and the extension as the value.

1.	 Create a new CLR Console Application project named SortedList.

2.	 Open the SortedList.cpp source file and add the following line immediately after the using
namespace System; line:

using namespace System::Collections::Generic;

The SortedList class is defined in the System::Collections::Generic namespace, and by inserting a
using directive, you can use the name without having to fully qualify it every time.

3.	 Add the following code to the main function to create a SortedList and add some data to it:

SortedList<String^, int> ^sl = gcnew SortedList<String^, int>();

sl->Add("Dilbert", 1044);
sl->Add("Wally", 2213);
sl->Add("Ted", 1110);
sl->Add("Alice", 3375);

When you create a SortedList, you must specify the types for the key and the value within the
angle brackets. In this case, we are using a String^ for the key, and an int for the value.

As with the List discussed in the previous section, a SortedList has a default capacity and will
automatically increase its capacity as necessary. Using alternative constructors, you can create
SortedList classes with particular initial capacities, and you can trim excess by using the Trim
ToSize function.

The Add method takes key/value pairs and adds them to the SortedList. If the key already
exists in the collection, the method throws an ArgumentException.

	 Chapter 12  Arrays and collections    223

Note  Keys cannot be nulls, but you can use nulls as values.

4.	 Add some code to print out the contents of the SortedList by using a for each loop.

for each (KeyValuePair<String^, int> kp in sl)
 Console::WriteLine("Key={0}, value={1}", kp.Key, kp.Value);

Each element of the SortedList is returned as a KeyValuePair object, and you can use its Key and
Value properties to retrieve the key and value.

1.	 In addition to retrieving values by index, you can retrieve them by key, as demonstrated here:

Console::WriteLine("Value for key 'Alice' is {0}", sl["Alice"]);

The indexer uses the key to return its associated value if a match is found; if no match is found,
the indexer throws an exception.

As an alternative to handling an exception, you can use TryGetValue, which returns a bool to
let you know whether it found a value.

int value = 0;
if (sl->TryGetValue("Fred", value))
 Console::WriteLine("Value is {0}", value);
else
 Console::WriteLine("Key not found");

In this code, value is passed through to TryGetValue by reference so that the function can
update it.

2.	 You can also modify entries in the list by using the indexer, like this:

// Change the value associated with key 'Alice'
sl["Alice"] = 5555;
Console::WriteLine("Value for 'Alice' is {0}", sl["Alice"]);

If the key already exists, its associated value is overwritten; if it doesn’t exist, a new key/value
pair is created.

3.	 Build and run the application.

Other SortedList operations
You can use the IndexOfKey and IndexOfValue methods to return the index of a given key or value,
and both of them will return –1 if the key or value you specify doesn’t exist in the collection. Likewise,
the ContainsKey and ContainsValue functions will return true if the collection contains a given value
or key.

If you want to delete items from the collection, you can use Remove to get rid of an item by key.
RemoveByIndex does the same thing by index, and Clear can be used to remove all entries.

224   Microsoft Visual C++/CLI Step by Step

Generics and templates

If you are familiar with standard C++, you might be wondering how .NET generics relate to C++ tem-
plates, because they look so similar (on the surface, at least) and seem in many cases to be doing the
same job.

Note  If you are new to C++ or have not encountered templates before, you might want to
skip this section on first reading.

Although generics and templates do have some features in common, they are very different in the
way in which they work, and neither of them can act completely as a substitute for the other. For this
reason, they are both supported in C++/CLI. Because the use of templates in C++/CLI is an advanced
topic, this section only gives a brief summary of the similarities and differences between the two
mechanisms.

■■ Templates are compile-time, generics are run-time: this means that a generic type is still
generic at run time, whereas a template has been instantiated at compile time.

■■ Templates support features such as specialization, non-type template parameters, and tem-
plate template parameters. Generics don’t support these and are rather simpler.

■■ Generic types cannot inherit from a type parameter, as is the case with templates.

■■ There is no metaprogramming support for generics.

■■ Generic types support constraints on type parameters, which templates do not.

The STL/CLR library
One reason why templates are supported in C++/CLI is to permit the use of the STL/CLR library. The
Standard Template Library (STL) is part of standard C++. It is best known for providing a set of high-
performance, extensible collection classes. This section can only give the briefest overview of what
the STL is and how it works.

The STL containers are standard in unmanaged C++ code, and a version that works with managed
types has been provided in the STL/CLR library. This has been done for two reasons. First, many C++
developers are familiar with (and like using) the STL containers, and this enables them to continue
to be productive. Second, the STL is a lot more extensible and configurable than the .NET collection
classes, and its features might appeal to developers looking for more performance and extensibility.

Note  If you want more details of the STL/CLR library, consult the reference documentation,
which, as of this writing, you can find at http://msdn.microsoft.com/en-us/library/bb385954.
aspx.

http://msdn.microsoft.com/en-us/library/bb385954.aspx
http://msdn.microsoft.com/en-us/library/bb385954.aspx

	 Chapter 12  Arrays and collections    225

Here is a simple example to give you a feel for what STL/CLR code looks like:

#include "stdafx.h"

#include <cliext\vector>

using namespace System;
using namespace cliext;

int main(array<System::String ^> ^args)
{
 // Create a vector of int
 vector<double> v1;

 // Append values
 for(int i=0; i<10; i++)
 v1.push_back(i*2.0);

 // Use an iterator to print all the values in order
 vector<double>::iterator it = v1.begin();
 for(; it != v1.end(); it++)
 Console::WriteLine(*it);

 return 0;
}

A vector is the equivalent of an ArrayList: a dynamically resizable array. The push_back function
adds an element to the end of a sequence, and if you were using a linked list, you could also use
push_front to add values to the beginning. As you might expect, the pop_back function removes an
element from the end. Iterators are classes, always called iterator, that are defined within a container,
so an iterator to a vector<int> is a vector<int>::iterator. You obtain an iterator by calling the begin
function, which returns an iterator that points to the start of the sequence. The end function returns
an iterator pointing to the end of the sequence, and you use this to check when you get to the end.

You use iterators like pointers: you can use ++ and –– to move them along the sequence, and * to
dereference them in order to get to the value at that position. The == and != operators are overload-
ed to compare position: if == for two iterators returns true, they are pointing at the same position.

The three concepts behind STL
The STL is based on three concepts, which have far-reaching consequences for how containers are
written and used.

The first concept is that of the container. In STL, the main job of a container is to hold its elements.
Although this might seem obvious, many container types in other libraries do a lot more besides,
which limits their adaptability. For example, although STL containers will allocate memory for their
members, you can provide your own memory allocator if you want. And, if you want to sort the con-
tents in some particular way, you can do this by providing your own custom external function rather
than having to rely on the sort function that's built in to the container.

226   Microsoft Visual C++/CLI Step by Step

Be aware also that STL containers own their contents, which circumvents a lot of ownership prob-
lems. This is achieved by containers taking copies of what you add.

The following table shows the most commonly used STL/CLR container types:

Name Description

vector A dynamically resizable array.

list A doubly-linked list.

map A map of key/value pairs, with unique non-null keys.

multimap A map of key/value pairs. Keys must be non-null but do
not have to be unique.

set An unordered set of unique elements.

multiset An unordered set of elements that permits duplicates.

queue A FIFO (first in, first out) queue, where elements are add-
ed at one and taken off the other.

deque A queue in which elements can be added and removed at
either end.

stack A LIFO (last in, first out) stack.

The second concept is the iterator. An iterator is an object that knows how to iterate over the
elements in a container, visiting each element in turn. Using an iterator means that you do not have
to know how to traverse the data inside the container: simply ask the iterator for the next item. The
implementation of STL iterators is very clever and makes it possible for them to interoperate with C++
pointers.

The final concept is the algorithm. Most non-STL container types are properly object oriented, in
that the container completely encapsulates its data and all the functionality needed to operate on it.
Want to sort the data in a list? Ask the list. Want to reverse the order? Again, ask the list. Although this
fits well with object-oriented practice, it can be awkward: what if we want to provide another sorting
algorithm? Object-oriented best practice states that the collection should hide its implementation, so
it would be difficult to write another sort function that is at all efficient because we cannot get at the
data.

STL encourages the use of external functions, called algorithms, to implement operations on con-
tainers. Algorithms work with containers by using iterators, so you will see code like this:

vector<int> vec;
...
sort(vec.begin(), vec.end());

Here, vec.begin is an iterator that points to the beginning of the sequence, and vec.end marks the
end. The code inside the sort function can simply call ++ on the first iterator to advance it to the next
item. When the begin and end iterators are pointing at the same location, the traversal is complete. In
this way, sort doesn’t need to know any details of the container that it is traversing.

	 Chapter 12  Arrays and collections    227

In case you think that this does not sound very efficient, the way that the STL has been written,
making heavy use of inline code and templates, means that very efficient code is generated at run
time.

Quick reference

To Do this

Create a fixed-size array of C++ built-in types. Use a native C++ array.

Create a managed array Use the generic array<> type. For example:

array<Person ^> ^people =
 gcnew array<Person ^>();

Iterate over the members of a managed array. Use a for each loop. For example:

List<Person> ^lst = new List<Person>();
...
for each (Person p in lst)
 Console::WriteLine(p);

Create a dynamic array. Use the List<> class.

Maintain a list of key/value pairs. Use the SortedList<> or Dictionary<> classes.

		 229

C H A P T E R 1 3

Properties

After completing this chapter, you will be able to:

■■ Describe what properties are.

■■ Explain how properties are supported by C++/CLI.

■■ Implement properties.

Properties have been available in some programming languages—such as Microsoft Visual Basic—for
some time, but the Microsoft .NET Framework has added support for them into Microsoft Interme-

diate Language (MSIL) so that they can be easily implemented in any .NET programming language.
You’ll see in this chapter that properties can often lead to a more natural style of programming with-
out sacrificing robustness or violating the principles of object-oriented programming.

What are properties?

It is a long-accepted principle of object-oriented programming that it’s a bad idea to give users direct
access to the data members that make up your classes. There are two main reasons for this:

■■ If users directly access data members, they’re required to know about the implementation of
the class, and that might limit your ability to modify the implementation later.

■■ Users of your classes might accidentally—or deliberately—corrupt the data in objects by using
inappropriate values, possibly leading to application failures or other undesirable results.

As a result, it’s recommended that you hide data members, making them private and giving
indirect access to them by using member functions. In traditional C++, indirect access has often been
implemented by using get and set members. Thus, a data member named date might be accessed
using a pair of member functions named set_date and get_date. This method works fine, but client
code always has to call the get and set functions directly.

230   Microsoft Visual C++/CLI Step by Step

Properties in the .NET Framework give you a way to implement a virtual data member for a class.
You implement the get and set parts of the property, and the compiler converts them into calls to the
get or set method as appropriate.

MyClass ^pmc = gcnew MyClass();
pmc->Name = "fred"; // calls the setter
s = pmc->Name; // calls the getter

It appears to the user that MyClass has a real data member called Name, and the property can be
used in exactly the same way as a real data member.

Anyone who programmed in Visual Basic would find the idea of implementing properties using
the get, set, and let methods familiar. In the .NET Framework, properties can be created and used
in any .NET language, so you can create a class in Visual Basic and still use its properties in a C++
application, and vice versa.

The two kinds of properties
C++/CLI supports two kinds of properties: scalar and indexed.

A scalar property gives access to a single value by using getter and setter code. For example, a
Name property would implement getter and setter code to give access to the underlying name data.
It’s important to note that a property doesn’t have to represent a simple data member of the man-
aged class; a property can represent derived values. For example, if a class has a date-of-birth mem-
ber, it would be possible to implement a property that calculates the age. Properties can also repre-
sent far more complex values, which might involve using data from other sources, such as searching
databases or accessing URLs.

An indexed property makes it possible for a property to be accessed as if it were an array, using the
traditional C++ square bracket notation.

Note  If you’ve ever come across the overloaded [] operator in traditional C++, you’ll find
that indexed properties provide similar functionality, but you don’t have to code the opera-
tor overload yourself.

Indexed properties are also implemented by using getter and setter code, and the compiler auto-
matically generates the required code so that clients can use the square bracket notation.

The next sections in this chapter demonstrate how to implement both scalar and indexed
properties.

	 Chapter 13  Properties    231

Implementing scalar properties

As mentioned in the previous section, a scalar property is one that gives you access to a single data
member by using getter and setter code. The following exercise shows you how to implement scalar
properties. In this example, we’ll use a simple Person class containing name and age members.

1.	 Start Microsoft Visual Studio 2012 and create a new CLR Console Application project named
Properties.

2.	 Add the following class definition after the using namespace System; line and before the main
function:

ref class Person
{
 String ^name;
 int age;
public:
 // Person class constructor
 Person()
 {
 Name = "";
 Age = 0;
 }

 // The Name property
 property String ^Name
 {
 String ^get() { return name; }
 void set(String ^n) { name = n; }
 }

 // The Age property
 property int Age
 {
 int get() { return age; }
 void set(int val) { age = val; }
 }
};

The class has two private data members that hold the name and age of the person. Properties
are introduced by the property keyword, which is followed by a type and then the property
name. It is convention to begin property names with a capital letter.

The getter and setter are declared inside the property and look a lot like nested functions. The
getter is always called get and has a return type that matches the property type. The setter is
called set, takes an argument of property type, and has a return type of void.

You can use the property from C++ code as if it were a real data member of the class. Note
how the properties are used in the constructor in preference to using the data members
directly; you will see why this is a good idea shortly.

232   Microsoft Visual C++/CLI Step by Step

Note  The property names in this example are the same as the names of the under-
lying data members, but capitalized. It is a widespread convention in C# code that
function and property names are capitalized. Therefore, to fit into the .NET world, it
is a good idea if your property names are capitalized, as well.

3.	 Add the following code to main to test the property:

int main(array<String ^> ^args)
{
 // Create a Person object
 Person ^p = gcnew Person();

 // Set the name and age using properties
 p->Name = "fred";
 p->Age = 77;

 // Access the properties
 Console::WriteLine("Age of {0} is {1}", p->Name, p->Age);
 return 0;
}

After a Person object has been created and initialized, the name and age members can be
accessed through the Name and Age virtual data members that have been generated by the
compiler.

4.	 Build and run the application.

Errors in properties
What happens if a property get or set method encounters an error? Consider the following code:

// Set the name and age using properties
p->Name = "spiro";
p->Age = -31;

How can the Age property communicate that it isn’t happy with a negative value? This situation is
a good one in which to use exceptions, which are discussed in Chapter 11, “Exception handling.” You
could modify the setter function to check its argument like this:

void set(int val)
{
 if (val < 0)
 throw gcnew ArgumentException("Negative ages aren't allowed");
 age = val;
}

If anyone tries to set the age to a negative value, an ArgumentException will be thrown to alert the
caller that there is a problem.

	 Chapter 13  Properties    233

Auto-implemented properties
Many properties simply assign to and return a data member, as shown in the following:

String ^name;

property String ^Name
{
 String ^get { return name; }
 void set(String ^n) { name = n; }
}

When that is the case, you can get the compiler to implement the getter and setter, and it will
generate a backing variable to store the data. You don’t see this variable, but you access it indirectly
through the property getter and setter.

This means that you can implement the Name property very simply, as demonstrated here:

property String ^Name;

In the next short exercise, you can declare and use an auto-implemented property in your Person
class.

1.	 Modify your Person class, providing an automatic implementation for the Name property and
removing the data member.

2.	 Build and run the application, which should work exactly the same as before.

Because you used the property in the constructor rather than assigning to the data member,
changing to an auto-implemented property still works.

Whenever you use auto-implemented properties, you must use the property within your class
when assigning to or reading the value because you don’t know the name of the backing variable
that the compiler creates.

Read-only and write-only properties
You don’t always have to provide get and set methods for a property. If you don’t provide a set
method, you end up with a read-only property. If you omit the get method, you’ll have a write-only
property (which is possible, but a lot less common than the read-only variety).

The following exercise shows how to implement a read-only property, and it also illustrates how to
create a derived property. You’ll change the Person class from the previous exercise so that it includes
a date of birth rather than an age. The derived Age property will then calculate the person’s age from
the date of birth; it’s obviously a derived property because you can’t change someone’s age without
changing his or her date of birth, as well. It’s also obviously a read-only property because it’s always
calculated and cannot be set by users of the class.

1.	 Either start a new CLR Console Application project or modify the one from the previous
exercise.

234   Microsoft Visual C++/CLI Step by Step

2.	 Type or edit the definition of the Person class so that it looks like the following code. Place it
after the using namespace System; line and before the main method.

ref class Person
{
 int dd, mm, yyyy;

public:
 // Person class constructor
 Person(String ^n, int d, int m, int y)
 {
 Name = n;
 dd = d; mm = m; yyyy = y;
 }

 // Auto implementation of the Name property
 property String ^Name;

 // The read-only Age property
 property int Age
 {
 int get() {
 DateTime now = DateTime::Now;
 return now.Year - yyyy;
 }
 }
};

The class now has three integer data members to hold the date of birth, initialized in the
constructor.

The Age property now has only a get method, which retrieves a DateTime object representing
the current date and time and then calculates the age from the difference between the cur-
rent year and the stored year.

3.	 Use the Name and Age properties as you did in the previous example.

int main(array<String ^> ^args)
{
 // Create a Person object
 Person ^p = gcnew Person("fred", 4,9,1955);

 // Access the Name and Age properties
 Console::WriteLine("Age of {0} is {1}", p->Name, p->Age);
 return 0;
}

You can’t set the Age property because you haven’t provided a setter. This will result in a com-
piler error if you try to assign to the Age property.

4.	 Build and run the application.

	 Chapter 13  Properties    235

Properties, inheritance, and interfaces
Properties are first-class members of types, on the same level as member functions and data mem-
bers. This means that you can use them in inheritance and in interfaces. Properties can be virtual and
even pure virtual, and it isn’t necessary for both the get and set methods to have the same virtual
specifier.

This exercise shows you how to use a virtual property when inheriting from a base class.

1.	 Create a new CLR Console Application project named PropertyInheritance.

2.	 Immediately after the using namespace System; line, define an abstract class called Shape.

public ref class Shape abstract
{
public:
 virtual property double Area;
};

This class defines a property called Area that is virtual and which can be overridden by
subclasses.

3.	 Add the definition for a Circle class, which inherits from Shape and which also implements
the Area property.

public ref class Circle : Shape
{
 double radius;
public:
 Circle(double r)
 {
 radius = r;
 }

 virtual property double Area
 {
 double get() override {
 return Math::PI * radius * radius;
 }
 }
};

The constructor for Circle takes a value for the radius, which is used in the Area property to
calculate the area of the circle. Note the placement of the modifiers on the Area property
declaration: It is declared as virtual, and the get is declared as an override.

4.	 Add a simple function to take a Shape and print out its area.

void printArea(Shape ^s)
{
 Console::WriteLine("Area is {0}", s->Area);
}

236   Microsoft Visual C++/CLI Step by Step

5.	 Create a Circle in main and pass it to the printArea function.

Circle ^c = gcnew Circle(4.0);
printArea(c);

6.	 Build and run the application.

You will see that even though the printArea function has a Shape as its argument type, it will
use the Circle implementation of Area at run time.

Implementing indexed properties

Now that you know how to implement a scalar property, let’s move on to consider indexed proper-
ties, which are also known as indexers. These are useful for classes that have data members that are
collections of items, and where you might want to access one of the items in the collection.

The Bank example
Consider as an example a Bank class that maintains a collection of Accounts. If you’re not using prop-
erties, you’d tend to see code such as the following being used to access members of the Bank class:

// Get a reference to one of the Accounts held by the Bank
Account ^acc = theBank->getAccount(1234567);

An indexed property makes it possible for you access the Account members by using array nota-
tion, such as is demonstrated here:

// Get a reference to one of the accounts held by the Bank
Account ^acc = theBank->Account[1234567];

You can implement get and set methods for indexed properties so that you can use them on both
sides of the equal sign (=). The following code fragment uses two properties, with the first indexed
property giving access to an account, and the second giving access to an overdraft limit:

// Set the overdraft limit for one of the accounts
theBank->Account[1234567]->OverDraft = 250.0;

Implementing the Bank class
The longer exercise that follows walks you through implementing the Bank and Account classes, and it
also shows you how to create and use both scalar and indexed properties.

1.	 Start Visual Studio 2012 and create a new CLR Console Application project named Banker.

	 Chapter 13  Properties    237

2.	 Add a new C++ header file named Bank.h to the project. When the file opens in the editor,
edit the class declaration so that looks like this:

#pragma once

ref class Bank
{
public:
 Bank();
};

3.	 Add an implementation file called Bank.cpp to the project. When it opens in the editor, edit
the code so that it looks like this:

#include "stdafx.h"
using namespace System;

#include "Bank.h"

Bank::Bank()
{
 Console::WriteLine("Bank: constructor");
}

4.	 To ensure that everything is correct, open the Banker.cpp file and add code to the main func-
tion to create a Bank object.

int main(array<String ^> ^args)
{
 Console::WriteLine("Bank Example");

 // Create a Bank object
 Bank ^theBank = gcnew Bank();

 return 0;
}

5.	 You must also include Bank.h from the Banker.cpp file so that the compiler will know where to
locate the declaration of the Bank class. Therefore, add the following code to Banker.cpp after
the #include “stdafx.h” line:

#include "Bank.h"

6.	 Compile and run the application. You should see the constructor message being printed on
the console.

238   Microsoft Visual C++/CLI Step by Step

Adding the Account class
The next stage involves creating the Account class in very much the same way.

1.	 Add a header file named Account.h to the project. Edit the header file so that it looks
like this:

#pragma once
using namespace System;

ref class Account
{
public:
 Account();
};

2.	 Add an implementation file named Account.cpp that looks like this:

#include "stdafx.h"
using namespace System;

#include "Account.h"

Account::Account()
{
 Console::WriteLine("Account: constructor");
}

3.	 Add some structure to the Account class. Accounts will have an account number, a bal-
ance, and an overdraft limit, so add three private members to the Account class definition in
Account.h, as shown in the following:

private:
 long accNumber; // the account number
 double balance; // the current balance
 double limit; // the overdraft limit

4.	 Open Account.cpp. Edit the constructor definition and implementation as follows so that three
values are passed in and used to initialize these three variables:

Account::Account(long num, double bal, double lim)
{
 Console::WriteLine("Account: constructor");
 // Basic sanity check
 if (num < 0 || lim < 0)
 throw gcnew ArgumentException("Bad arguments to constructor");

 // Initialize values
 accNumber = num;
 balance = bal;
 limit = lim;
}

	 Chapter 13  Properties    239

Remember that you will need to modify the declaration of the constructor in the Account.h
header file, as well.

The basic sanity check simply checks that the account number and overdraft limit aren’t nega-
tive. If they are, it throws an ArgumentException.

Creating Account class properties
After the Account class has been constructed, you can add properties to give access to the three data
members. All three members are scalar, so the properties are easy to implement.

1.	 Add a public property to Account.h to allow read-only access to the account number, as
shown here:

property long AccountNumber
{
 long get() { return accNumber; }
}

You can add the function definition inline in the class definition. Remember to put it in the
public section.

2.	 You also need to add a read-only property for the balance member, because in real life, you
don’t want people simply modifying the balances in their accounts from code.

property double Balance
{
 double get() { return balance; }
}

3.	 Add a read/write property for the overdraft limit because it’s quite possible that the limit
might be changed from time to time.

property double OverdraftLimit
{
 double get() { return limit; }
 void set(double value) {
 if (value < 0)
 throw gcnew ArgumentException("Limit can't be negative");

 limit = value;
 }
}

If you choose to implement these properties inline in the class definition, you’ll need to add a
using namespace System; line or fully qualify the name of ArgumentException before the code
will compile.

240   Microsoft Visual C++/CLI Step by Step

4.	 Test out your implementation by adding some code to the main function in Banker.cpp to
create a new Account object and access its properties. Include the Account.h file, and then add
code to create an Account object, as demonstrated here:

// Create an Account object
Account ^theAccount = gcnew Account(123456, 0.0, 0.0);

5.	 Build and run the application and check the output.

Adding accounts to the Bank class

The purpose of the Bank class is to hold Accounts, so the next step is to modify the Bank class to
hold a collection of Account objects. Rather than design something from scratch, you’ll use the
System::Collections::Generic::List class (which is introduced in Chapter 12, “Arrays and collections”)
to hold the Accounts.

Implementing the Add and Remove methods
The Add and Remove methods provide a way to manipulate the collection of Accounts held by the
Bank class.

1.	 Open the Bank.h header file. Add the following two lines of code immediately after the
#pragma once line at the top of the file:

using namespace System::Collections::Generic;
#include "Account.h"

The using declaration will make it easier to use a List in the Bank class, and you’ll need to ref-
erence the Account class later.

2.	 Add a List variable to the Bank class, ensuring that it’s private.

List<Account^> ^accounts;

Because List is a generic collection, you need to specify what it is going to hold. In this case,
the List is going to hold Account handles.

3.	 Add the code for the public AddAccount method inline in the header file as follows:

bool AddAccount(Account ^acc)
{
 // check if the account is already in the list
 if (accounts->Contains(acc))
 return false;
 else
 accounts->Add(acc);
 return true;
}

	 Chapter 13  Properties    241

AddAccount takes a handle to an Account object and then uses the List::Contains method to
check whether the account already exists in the collection. If it doesn’t, the Account is added
to the collection.

4.	 Add code for the RemoveAccount function, which works in a very similar way.

bool RemoveAccount(Account ^acc)
{
 // check if the account is already in the list
 if (accounts->Contains(acc))
 {
 accounts->Remove(acc);
 return true;
 }
 else
 return false;
}

RemoveAccount checks whether an Account is in the list and, if present, removes it. It isn’t
necessary to call Contains because RemoveAccount will silently do nothing if you try to remove
an item that isn’t in the list. However, users might be interested in knowing that the account
they’re trying to remove isn’t in the collection already.

5.	 Add the following line of code to the Bank constructor to create the List member:

accounts = gcnew List<Account^>();

6.	 Build the application to ensure that there are no errors.

Implementing an indexed property to retrieve accounts
You can now manipulate the collection of Accounts, adding and removing items. If you want to look
up a particular account, you’ll probably want to do so by the account number, and an indexed prop-
erty provides a good way to access accounts by account number.

Indexed properties work in a very similar way to scalar properties, but you show the compiler that
you are defining an indexed property by including the index type in square brackets after the prop-
erty name.

property double Balance[long]

This informs the compiler that we are defining an indexed property called Balance that will use
a long as its index type. When you define the indexed property, you include the index as the first
parameter to the getter and setter.

property double Balance[long]
{
 double get(long idx) { ... }
 void set(long idx, double value) { ... }
}

242   Microsoft Visual C++/CLI Step by Step

Within the getter and setter, you can use the index to find the appropriate value. You can use the
indexer like this:

// Get the balance for account 12345
double bal = myBank->Balance[12345];

In this exercise you will implement an indexed property to retrieve Account objects. Because
you only need to retrieve Account handles and not set them, you’ll implement a read-only indexed
property.

1.	 Open the Bank.h header file.

2.	 Add the following code to implement the property:

// Indexed property to return an account
property Account ^default[long]
{
 Account ^get(long num)
 {
 for each(Account ^acc in accounts)
 {
 if (acc->AccountNumber == num)
 return acc;
 }
 throw gcnew ArgumentOutOfRangeException("No such account");
 }
}

Default properties
You might wonder why the property is called “default.” It is possible for a class to have multiple
indexers, but you have to use them explicitly by name. An indexed property called default, on
the other hand, can be used directly on an object, such as in the following:

// Get account 12345
Account ^acc = myBank[12345];

You normally use the default indexer for the property that is most often used.

When you find an account whose number matches the one passed in, its handle is returned.
If no such account is found, an exception is thrown because trying to access a nonexistent
account is equivalent to reading off the end of an array: It's a serious error that should be
signaled to the caller.

	 Chapter 13  Properties    243

3.	 Test out the Bank class by adding some code to the main function in Banker.cpp. You’ll need
to start by ensuring that the Bank.h and Account.h header files are included. Next add some
code so that your main function is similar to the following:

int main(array<String ^> ^args)
{
 Console::WriteLine("Bank example");

 // Create a bank
 Bank ^theBank = gcnew Bank();

 // Create some accounts
 Account ^accountOne = gcnew Account(123456, 100.0, 0.0);
 Account ^accountTwo = gcnew Account(234567, 1000.0, 100.0);
 Account ^accountThree = gcnew Account(345678, 10000.0, 1000.0);

 // Add them to the Bank
 theBank->AddAccount(accountOne);
 theBank->AddAccount(accountTwo);
 theBank->AddAccount(accountThree);

 // Use the indexed property to access an account
 Account ^pa = theBank[234567];
 Console::WriteLine("Account Number is {0}", pa->AccountNumber);

 return 0;
}

After creating a Bank and a number of Account objects, you add the Account objects to the
Bank collection by calling Add. You can then use the indexed property to access an account
by number and use that pointer to display the balance. Test the property by passing in an
account number that doesn’t exist and check that an exception is thrown.

4.	 Build and run the application and then check the output.

Quick reference

To Do This

Create a property for a C++ class. Use the property keyword and implement get and/or set
methods. For example:

property int Weight
{
 int get() { ... }
 void set(int w) { ... }
}

Implement a simple property that requires no logic in its
get or set methods.

Use an auto-implemented property. For example:

property String ^Name;

Implement a read-only property. Implement only the get method.

Implement a write-only property. Implement only the set method.

Implement an indexed property. Implement a property that specifies an index type in
square brackets, and whose get and set methods take an
index value that is used to determine which value to get
or set. For example:

property Amount ^Pay[Person]
{
 Amount ^get(Person^) { ... }
}

		 245

C H A P T E R 1 4

Delegates and events

After completing this chapter, you will be able to:

■■ Understand what delegates are.

■■ Create and use delegates.

■■ Explain what events are.

■■ Create and use events.

Delegates and events are extremely powerful and important constructs in the Microsoft .NET
Framework. Events in particular are used widely in GUI applications as a means of communicating

between components, but both delegates and events can be used to good effect in non-GUI code.

What are delegates?

The function pointer mechanism in C and C++ has been used by programmers for many years, and
it’s a very useful way of implementing mechanisms such as event handlers. Unfortunately, function
pointers are a C++ language feature, so they’re of no use in the .NET environment, where features
need to be accessible from many languages. If you’re interested in knowing more about function
pointers and how they work, see the sidebar that follows.

Delegates are the .NET equivalent of function pointers, and they can be created and used from
any .NET language. They can be used by themselves, and they also form the basis for the .NET event
mechanism discussed in the second part of this chapter.

246   Microsoft Visual C++/CLI Step by Step

What are function pointers?
With a normal pointer, you can access a variable through the address it contains. With a func-
tion pointer, you can execute a function by using the address of the routine. In exactly the same
way that you can use a pointer to hold the addresses of different variables, you can use the
same function pointer to invoke different functions. And, in the same way that normal pointers
must have a type associated with them (so that you can only access doubles with a double*, for
example), function pointers must have a function signature associated with them.

The following line of code shows how you declare a function pointer in C++:

long (*pf)(int, int);

The code declares a function pointer called pf, which can be used to invoke any function
that takes two int parameters and returns a long. The following function prototype has the
right signature:

long func1(int, int);

You can invoke the function indirectly like this:

pf = func1; // assign address of func1 to pf
long l = pf(3,4); // invoke func1() through pf

Remember that in C++, the name of a function without any parentheses evaluates to its ad-
dress, so the first line takes the address of the function and stores it in pf. The second line uses
pf to invoke the function.

You can use a function pointer to invoke any function that matches its signature, and that’s
what makes function pointers useful for event handling. You can define a function pointer to
represent the event handler and then hook up the actual function to the pointer later.

What is the purpose of delegates?

A delegate is a class whose purpose it is to invoke one or more methods that have a particular signa-
ture. It is basically an indirect way of executing a function by delegating to an intermediate object.
Here’s a simple example to show when you might want to use a delegate.

Imagine that I want to be able to perform operations on numbers by passing a number into a
function and getting a transformed value back, as demonstrated in the following:

double d = 3.0;
double result = Square(d);
result = Cube(d);
result = SquareRoot(d);
result = TenToThePowerOf(d);

	 Chapter 14  Delegates and events    247

In each case, I’m calling a function that has the same signature: one that takes a double and returns
a double as its result.

With delegates, I can define a mechanism by which I can call any of those methods because they
all have the same signature. Not only can I call any of the four methods above, but I can also define
other methods and call them through the delegate—provided that they are also functions that take a
double and return one. This makes it possible for one class or component to define a delegate, and for
other classes to attach functions to the delegate and use it. You’ll see examples of this use of del-
egates later in the chapter when we cover events.

In this case, I want to use the delegate to call one method at a time, but it’s possible to attach
more than one function to a delegate. All the functions are called in order when the delegate is
invoked. The .NET Framework defines the System::Delegate class as the base for delegates that call a
single method, and System::MulticastDelegate as the base for delegates that can call more than one
method. All delegates in C++/CLI are multicast delegates.

Defining delegates
This exercise uses the numerical operations example from the previous section to show you how to
create and use a simple delegate in C++/CLI code.

1.	 Start Microsoft Visual Studio 2012 and create a new CLR Console Application project named
Delegate.

2.	 Open the Delegate.cpp source file and add the definition of a delegate to the top of the file,
immediately after the using namespace System; line.

delegate double NumericOp(double);

The delegate keyword is used to define a delegate. It might look as though this is a function
prototype for a function named NumericOp, but it’s actually defining a delegate type that
inherits from System::MulticastDelegate. This delegate type, named NumericOp, can be bound
to any function that takes one double as an argument and returns a double.

Implementing delegates
Now that you have defined a delegate, you can write code to use it to call functions. One of the rules
for using delegates is that you can only use a delegate to call functions that are members of C++/CLI
classes; you can’t use a delegate to call a global function or a function that’s a member of an unman-
aged C++ class.

248   Microsoft Visual C++/CLI Step by Step

Calling static member functions by using delegates
Let’s start by looking at the simplest case: calling static member functions by using a delegate.

1.	 Continue with the project from the previous exercise. All the functions we want to call need to
be static members of a class, so add the following class to your source code file, just above the
main function:

ref class Ops
{
public:
 static double Square(double d)
 {
 return d*d;
 }
};

This managed class contains one public static method, which simply takes a number and
returns its square.

2.	 Create a delegate in the main function of the application, as shown here:

// Declare a delegate
NumericOp ^op = gcnew NumericOp(&Ops::Square);

When you declared the delegate, you created a new type named NumericOp, so you can now
create a NumericOp object. The constructor takes one argument: this is the address of the
function that is to be associated with the delegate, so you use the & operator to specify the
address of Ops::square.

The object pointed to by op is now set up so that it will call the square function when it is in-
voked, and it will take exactly the same arguments (and return the same type) as Ops::square.

Note  You can’t change the function that a delegate invokes after it has been cre-
ated. This is one respect in which delegates differ from C++ function pointers.

3.	 Every delegate has an Invoke method that you can use to call the function that has been
bound to the delegate. Invoke will take the same arguments and return the same type as the
function being called. Add the following lines to use op to call the square function:

// Call the function through the delegate
double result = op->Invoke(3.0);

Console::WriteLine("Result is {0}", result);

4.	 Build and run the application.

	 Chapter 14  Delegates and events    249

5.	 You can now easily create another static member, create a delegate, and call the function. Test
this out by adding to the Ops class a second public static member called Cube.

static double Cube(double d)
{
 return d*d*d;
}

6.	 Create another delegate in the same way as the first; however, this time, pass it the address of
the Cube function in the constructor.

// Create a second delegate and use it to call cube
op = gcnew NumericOp(&Ops::Cube);
result = op(3.0);

Console::WriteLine("Result of Cube() is {0}", result);

There are two things that you might notice about this code. The first is that you have reused
the op reference to refer to the new delegate object. This means that the original delegate
that you used to call Square is no longer referenced; thus, is can be garbage-collected.

The second is that there is no explicit call to Invoke. To mirror how delegates work in C# (and
how function pointers work in unmanaged C++), you can actually omit the Invoke keyword,
treating the delegate as if it were a function call itself.

7.	 Build and run the application and check that it runs as you expect.

Calling non-static member functions by using delegates
You can also call non-static member functions of classes by using delegates. By definition, a non-
static member function must be called on an object, so you need to specify to the delegate the
function it’s going to call and the object it’s going to use. You do so in the delegate’s constructor, as
illustrated here:

// Declare a delegate bound to a non-static member
MyDelegate ^pDel = gcnew MyDelegate(myObject, &MyClass::MyFunction);

The constructor specifies the address of an object, myObject, and a member function belong-
ing to the class to which myObject belongs. Invoking this delegate is equivalent to directly calling
myObject->MyFunction.

Using multicast delegates
We’ve seen how it’s possible to use a delegate to call a single function, but it’s also possible for a
delegate to call more than one function with a single call to Invoke. A delegate that does so is called
a multicast delegate and is derived from the System::MulticastDelegate class.

250   Microsoft Visual C++/CLI Step by Step

Note  All delegates that you create in C++/CLI by using the delegate keyword are multicast
delegates.

All delegate objects have an invocation list that holds the functions to be called. The invocation list
for a normal delegate has one member. You can manipulate the invocation lists for multicast del-
egates by using the Combine and Remove methods, although this is seldom done in practice.

If you look at the documentation for the Combine method, you’ll see that it takes two or more
Delegate objects as its arguments. You don’t build up a multicast delegate by specifying more
functions to add to its invocation list. Instead, a multicast delegate is built up by combining other
delegates.

The following exercise shows you how to create and use a multicast delegate.

1.	 Create a new CLR Console Application project named Multicast.

2.	 Open the Multicast.cpp source file and add the definition of a delegate to the top of the file,
immediately after the using namespace System; line.

delegate void NotifyDelegate(int);

You can bind this delegate, named NotifyDelegate, to any function that takes one int as an
argument and doesn’t return anything.

3.	 You’re going to call two functions through the multicast delegate. Because all functions called
by delegates have to be members of a managed class, define two classes at the start of your
project, each of which contains a static member function.

ref class Client1
{
public:
 static void NotifyFunction1(int n)
 {
 Console::WriteLine("Client1: got value {0}", n);
 }
};

ref class Client2
{
public:
 static void NotifyFunction2(int n)
 {
 Console::WriteLine("Client2: got value {0}", n);
 }
};

These two classes are almost identical, both defining a single static member function that has
the signature required by the delegate.

	 Chapter 14  Delegates and events    251

4.	 You want to call the two static member functions through one delegate, but you can’t create
a delegate to bind to two functions directly. Instead, you need to create two normal delegates
(as you did in the previous exercise) and combine them into a multicast delegate. So, define
two delegates in the main function, each of which binds to one of the static methods.

Console::WriteLine("Multicast Delegates");

// Create two delegates
NotifyDelegate ^del1 = gcnew NotifyDelegate(&Client1::NotifyFunction1);
NotifyDelegate ^del2 = gcnew NotifyDelegate(&Client2::NotifyFunction2);

At this stage, you could invoke both of the delegates, just as you did in the previous exercise.

5.	 Build a multicast delegate from del1 and del2 by using the += operator, as shown in the
following:

// Create a third delegate from the first two
NotifyDelegate ^del3;
del3 += del1;
del3 += del2;

6.	 You can now invoke the multicast delegate as normal.

// Invoke the multicast delegate
Console::WriteLine("Invoking del3");
del3(5);

Remember that you don’t have to call Invoke explicitly. When you build and run the applica-
tion, you should see two lines of output, as shown in the following screen shot:

Note that the functions are called in the order in which the delegates are combined, so if you
want to change the order, you’ll need to change the way you create the multicast.

7.	 You can use this delegate as the basis for making up another one.

// Create a second multicast delegate and invoke it
NotifyDelegate ^del4 = del3 + del3;
Console::WriteLine("Invoking del4");
del4(5);

252   Microsoft Visual C++/CLI Step by Step

In this case, you’re combining the invocation list of del3 twice, which results in the output
shown in the following screen shot when you invoke it. Notice how you can use the + opera-
tor to compose delegates at construction time.

8.	 As the final part of this exercise, you can use the –= operator to remove an item from a
delegate’s invocation list.

// Remove an item
del3 -= del2;
Console::WriteLine("Invoking del3");
del3(5);

You specify the handle of the delegate that you want to remove on the right side of the –=
operator. If the delegate to be removed exists in the invocation list of the first delegate, it will
be removed. In this example, you have removed del2 from del3; when you invoke del3, only
del1 is executed.

Delegates that return a result
You can, of course, use a delegate to call a function that returns a result. Here is an example:

ref class JMath
{
public:
 static double Square(double d) { return d*d; }
};

// Delegate to call a function that returns a double
delegate double MathOp(double d);

// Bind a delegate to Math::square
MathOp ^m = gcnew MathOp(&JMath::Square);

// Invoke the delegate
double result = m(3.3);

What happens if you create a multicast delegate that calls several such functions? Which result will
be returned? It is most normal to use functions that don’t return a value with multicast delegates, but

	 Chapter 14  Delegates and events    253

there is nothing to stop you from calling functions that do return a value. Usually, the result of the last
function executed will be returned, although this is implementation dependent. If you want to be sure
of retrieving a particular value (or getting values from intermediate steps), you might want to walk
over the list of delegates, which you can do by using the GetInvocationList function within a for each
loop, as shown here:

for each (MathOp ^m in myMultiDelegate->GetInvocationList())
{
 double val = m(…);
}

What are events?

Most, if not all, GUI platforms support the idea of events, and events are very heavily used in GUI pro-
gramming. As an example, consider a button. Buttons don’t exist on their own; they are used as part
of a user interface and are contained by some other item. This item is usually a form, but it could also
be some other control, such as a toolbar.

The whole point of having a button on a form is so that the user can click it to signal his intent to
the application and convey instructions. For example, “the user clicked the OK button, so dismiss the
dialog box” or “the user clicked the Print button on the toolbar, so print the document.”

Events provide a formalized, standard mechanism by which event sources (such as a button) hook
up with event receivers (such as a form). Events in the .NET Framework implement a publish-and-
subscribe mechanism, where event sources make public the events that they will raise—they publish
them—and event receivers inform the source as to which events they’re interested in—they subscribe
to events. Event receivers can also unsubscribe when they no longer want to receive a particular
event.

Events in the .NET Framework are based on delegates, and as is illustrated in the diagram that
follows, it isn’t too hard to see how this works. An event source declares a delegate for each event
that it wants to generate, such as Click, DoubleClick, and so on. An event receiver then defines suit-
able methods and passes them to the event source, which adds them to its delegates. When the time
comes to fire the event, the event source calls Invoke on the delegate, thus calling the requisite func-
tions in the receivers.

254   Microsoft Visual C++/CLI Step by Step

How do events differ from delegates?
People are sometimes confused about the difference between events and delegates because
they seem to be doing very much the same task. You have seen how a delegate provides a way
to execute a function indirectly, and this could be used to implement event handing: a button
could expose a delegate object for the click event, and you could bind your handler function to
it by using the += operator.

There are two problems with this, however. The first is that the button’s delegate would have
to be public in order to let clients bind to it, and this means that anyone could invoke the del-
egate. This isn’t really desirable; only the button should be able to invoke its click delegate to
say it has been clicked. The second problem is that even though clients could add and remove
event handlers by using the += and –= operators, it is also possible to use the plain = operator.
This would reset the invocation list to contain a single item, losing any bindings that might have
been set up by other clients.

Events solve these two problems. An event uses a delegate to provide the underlying
mechanism, but it refines the behavior of a delegate in two ways:

■■ An event can only be fired by the type that declares it.

■■ Clients can only add and remove event handler functions using += and –=. They cannot
use = to reset the invocation list.

Implementing an event source class
The actual event mechanism simplifies the syntax so that you don’t have to deal with delegates
directly, and it’s designed to fit in with the event mechanism that already exists in Microsoft Visual
Basic. The following exercise takes you through creating an event source class and event receiver
classes that register themselves with the source and use the events when they’re fired.

1.	 Create a new CLR Console Application project named Event.

2.	 Event sources and receivers use delegates, so define a delegate for each of the events raised
by the source. In this example, two events will be used, so open the Event.cpp source file and
define the following two delegates immediately after the using namespace System; line:

// Delegates
delegate void FirstEventHandler(String^);
delegate void SecondEventHandler(String^);

	 Chapter 14  Delegates and events    255

The delegates define the signatures of the methods that event receivers must implement to
handle the events, so they’re often given names that end with Handler. Each of these events
will simply pass a string as the event data, but you can make the data passed as complex as
you want.

3.	 Add the implementation of the event source class to the source file.

// Event source class
ref class EvtSrc
{
public:
 // Declare the events
 event FirstEventHandler ^OnFirstEvent;
 event SecondEventHandler ^OnSecondEvent;

 // Event raising functions
 void RaiseOne(String ^msg)
 {
 OnFirstEvent(msg);
 }

 void RaiseTwo(String ^msg)
 {
 OnSecondEvent(msg);
 }
};

The first thing to note is the use of the event keyword to declare two events. You need one
event declaration for each event that you want to raise, and its type is a handle to the delegate
associated with the event. So, in the case of the first event object, the type is FirstEventHandler
to match the FirstEventHandler delegate. Using the event keyword causes the compiler to
generate a lot of delegate handling code for you; if you’re interested in exactly what’s going
on, see the sidebar that follows.

You can then use the event objects in the EvtSrc class to raise the events by using them as if
they were function calls and passing the appropriate argument.

256   Microsoft Visual C++/CLI Step by Step

How does the event keyword work?
When you declare an event member for a managed class, the compiler generates code to
implement the underlying delegate mechanism. For the OnFirstEvent event object in the exer-
cise, you get the following methods generated:

■■ add_OnFirstEvent, a public method that calls Delegate::Combine to add a receiver to
this event’s invocation list. Rather than calling add_OnFirstEvent directly, you use the
+= operator on the event object, which calls the method for you.

■■ remove_OnFirstEvent, a public method that calls Delegate::Remove to remove a receiver
from this event’s invocation list. As with the add_ function, you don’t call this method
directly but instead use the –= operator on the event object.

■■ raise_OnFirstEvent, a protected method that calls Delegate::Invoke to call all the methods
on this event’s invocation list.

The raise_ method is protected so that it can only be called through the proper channels
and not directly by client code.

Implementing an event receiver
You now have a class that can be used to fire events, so the next thing you need is a class that will
listen for events and act upon them when they’ve been generated.

1.	 Continue with the project from the previous exercise and add a new class to the project
named EvtRcv.

// Event receiver class
ref class EvtRcv
{
 EvtSrc ^theSource;
public:
};

The receiver has to know the event sources it’s working with to be able to subscribe and
unsubscribe, so we add an EvtSrc member to the class to represent the one source with which
you’ll be working.

2.	 Add a constructor to the class that takes a handle to an EvtSrc object and checks that it isn’t
null. If the pointer is valid, save it away in the EvtSrc member.

EvtRcv(EvtSrc ^src)
{
 if (src == nullptr)
 throw gcnew ArgumentNullException("Must have event source");
 // Save the source
 theSource = src;
}

	 Chapter 14  Delegates and events    257

3.	 Define the member handler functions in EvtRcv that EvtSrc is going to call. As you know from
our discussion of delegates, the signatures of these methods must match the signatures of the
delegates used to define the events, as shown here:

// Handler functions
void FirstEvent(String ^msg)
{
 Console::WriteLine("EvtRcv: event one, message was {0}", msg);
}

void SecondEvent(String ^msg)
{
 Console::WriteLine("EvtRcv: event two, message was {0}", msg);
}

FirstEvent is the handler for the FirstEventHandler delegate, and SecondEvent is the handler for
the SecondEventHandler delegate. Each of them simply prints out the string that’s been passed
to them.

4.	 After you have the handlers defined, you can subscribe to the event source. Edit the construc-
tor for the EvtRcv class so that it looks like the following:

EvtRcv(EvtSrc ^src)
{
 if (src == nullptr)
 throw gcnew ArgumentNullException("Must have event source");
 // Save the source
 theSource = src;

 // Add our handlers
 theSource->OnFirstEvent +=
 gcnew FirstEventHandler(this, &EvtRcv::FirstEvent);
 theSource->OnSecondEvent +=
 gcnew SecondEventHandler(this, &EvtRcv::SecondEvent);
}

You subscribe to an event by using the += operator. In the code, you’re creating two new del-
egate objects, which will call back to the FirstEvent and SecondEvent handlers on the current
object. This is exactly the same syntax you’d use if you were manually creating a delegate. The
difference is in the += operator, which combines the newly created delegate with the event
source’s delegate.

As you read in the preceding sidebar, += calls the compiler-generated add_OnFirstEvent
method, which in turn calls Delegate::Combine.

Although you’ve subscribed to all the events automatically in the constructor, you could also
use member functions to subscribe to individual events as required.

258   Microsoft Visual C++/CLI Step by Step

5.	 A matching –= operator lets you unsubscribe from events. Add the following member func-
tion to EvtRcv, which will unsubscribe from the first event:

// Remove a handler
void RemoveHandler()
{
 // Remove the handler for the first event
 theSource->OnFirstEvent -= gcnew FirstEventHandler(this,
 &EvtRcv::FirstEvent);
}

The syntax for using the –= operator to unsubscribe is exactly the same as that for the +=
operator to subscribe.

6.	 Build the application to ensure that there are no errors.

Hooking it all together
Now that you’ve written the event source and event receiver classes, you can write some code to test
them out.

1.	 Edit the main function to create event source and receiver objects.

int main(array<String^> ^args)
{
 Console::WriteLine("Event Example");

 // Create a source
 EvtSrc ^src = gcnew EvtSrc();

 // Create a receiver, and bind it to the source
 EvtRcv ^rcv = gcnew EvtRcv(src);

 return 0;
}

The EvtSrc constructor takes no arguments, whereas the EvtRcv constructor must be passed
a valid EvtSrc pointer. At this point, the receiver is set up, listening for events to be fired from
the source.

int main(array<String^> ^args)
{
 Console::WriteLine("Event Example");

 // Create a source
 EvtSrc ^src = gcnew EvtSrc();

 // Create a receiver, and bind it to the source
 EvtRcv ^rcv = gcnew EvtRcv(src);

 // Fire events
 Console::WriteLine("Fire both events:");
 src->RaiseOne("Hello, mum!");

	 Chapter 14  Delegates and events    259

 src->RaiseTwo("One big step");

 return 0;
}

Calls to the source’s RaiseOne and RaiseTwo functions tell it to fire both events. When you run
this code, you should see output similar to the following screen shot:

The receiver has had both handlers called, so it has printed both of the messages associated
with the events.

2.	 Insert some code to call the RemoveHandler function of the receiver and try firing both events
again.

// Remove the handler for event one
rcv->RemoveHandler();

// Fire events again
Console::WriteLine("Fire both events:");
src->RaiseOne("Hello, mum!");
src->RaiseTwo("One big step");

This time you should see only the second message printed because the receiver is no longer
handling the first event.

Standard events and System::EventHandler
You can base an event on a delegate with any signature, but the standard .NET event model requires
that delegates conform to a particular standard. All standard event handler functions have the follow-
ing form:

void MyHandler(Object src, EventArgs ^args)

Handler functions do not have a return value and take two arguments. The first is a reference to
the object that raised the event, and the second is a reference to an object of type EventArgs or a
subclass. This second argument is used to pass extra information about the event. For example, in
the case of a mouse-click event, it will contain the position of the cursor and details of which mouse
button was clicked and whether any modifier keys were used. Because all system events follow this

260   Microsoft Visual C++/CLI Step by Step

pattern, it is good practice to make your events and their corresponding delegates use this model,
as well.

All the delegates used in the standard event model will look the same, having the same two
arguments and void return type. For this reason, you don’t need to keep defining your own delegate
types; instead, you can make use of the System::EventHandler delegate, which is designed to call func-
tions that match the standard event handler signature.

The following exercise shows you how to use the System::EventHandler delegate. You will define a
Counter class that contains a single integer value, which you can increment by calling the increment
function. When you construct a Counter, you can specify a limit, and an event will be fired when the
limit is reached.

1.	 Create a new CLR Console Application named EventHandler.

2.	 Add a new class called Counter to the source file. This class should have two data members
representing the current count and the limit, and they should be initialized in the constructor.

ref class Counter
{
 int count;
 int limit;
public:

 Counter(int lim)
 {
 count = 0;
 limit = lim;
 }
};

3.	 Add the declaration of a standard EventHandler event to the class, placing it in the public
section.

event EventHandler ^LimitReached;

4.	 Implement the Increment function, arranging for it to fire the LimitReached event at the ap-
propriate point.

void Increment()
{
 Console::WriteLine("Count: {0}", ++count);
 if (count == limit)
 LimitReached(this, gcnew EventArgs());
}

Observe how the arguments to the event are a reference to the current object, and an
EventArgs object. This default EventArgs object doesn’t pass any extra information to the
client but is necessary to conform to the delegate signature.

	 Chapter 14  Delegates and events    261

5.	 You now need some code that will be called when the event is fired, so add an Observer class
to the source.

ref class Observer
{
public:
 static void CallMe(Object ^src, EventArgs ^args)
 {
 Console::WriteLine("Limit reached");
 }
};

The static CallMe method has the right signature for an event handler; thus, it can be bound
to the LimitReached event.

6.	 Implement the main function. Start by creating a Counter object with an appropriate limit set
and then bind the CallMe method to the Counter’s LimitReached event. Finally, increment the
Counter enough times that the limit is reached.

int main(array<System::String ^> ^args)
{
 // Define a counter with a limit of 3
 Counter count(3);

 count.LimitReached += gcnew EventHandler(&Observer::CallMe);

 for (int i=0; i<5; i++)
 count.Increment();

 return 0;
}

When you build and run the application, you should see the event handler being called when
the limit is reached, as shown in the following screen shot:

262   Microsoft Visual C++/CLI Step by Step

Quick reference

To Do This

Define a delegate. Use the delegate keyword with a function prototype. For
example:

delegate void DelegateOne(double d);

Create a delegate bound to a static class member. Use gcnew to create a delegate object, passing nullptr for
the first parameter, and the address of the static function
as the second parameter. For example:

DelegateOne ^del = gcnew DelegateOne(
 nullptr, &MyClass::MyFunc);

Create a delegate bound to a non-static class member. Use gcnew to create a delegate object, passing a handle
to the instance for the first parameter, and the address
of the member function as the second parameter. For
example:

DelegateOne ^del = gcnew DelegateOne(
 myObject, &MyClass::MyOtherFunc);

Execute the function bound to a delegate. Use the delegate’s Invoke function, passing any param-
eters required. For example:

del->Invoke(22.7);

Create an event. First, define a delegate to define the handler routine for
this event, as follows:

delegate void ClickHandler(int, int);

Then, in the event source class, use the event keyword to
define an event object, like this:

event ClickHandler ^OnClick;

Raise an event. Use the event object as if it were a function, passing any
parameters. For example:

OnClick(xVal, yVal);

Subscribe to an event. Use the += operator. For example:

src->OnClick += new ClickHandler(this,
 &myHandler);

Unsubscribe from an event. Use the –= operator. For example:

src->OnClick -= new ClickHandler(this,
 &myHandler);

Create an event that follows the standard EventHandler
pattern

Use a System::EventHandler delegate. For example:

event EventHandler LimitReached;

		 263

C H A P T E R 1 5

The .NET Framework class library

After completing this chapter, you will be able to:

■■ Identify the components of the Microsoft .NET Framework.

■■ Work with the major components of the .NET Framework.

■■ Recognize the main namespaces that make up the .NET Framework class library.

In previous chapters, you learned how to use C++/CLI to build simple applications. Now, it’s time to
move on to learn how to build real Microsoft .NET applications that involve GUIs, databases, web

servers, and all the other mechanisms needed by the modern Microsoft Windows application. And
that’s where the .NET Framework comes in.

The .NET Framework is the library of classes that you use to build Windows applications. It is large,
complex, and far-reaching in its scope. This chapter gives you an overview of what the .NET Frame-
work is and what it can do before we cover some of its features in more detail in later chapters.

What is the .NET Framework?

The .NET Framework is a computing platform that has been designed by Microsoft to simplify the
development of modern applications, such as the following:

■■ Applications that use sophisticated GUI front ends

■■ Applications that use the Internet

■■ Applications that are distributed over more than one computer

■■ Applications that make use of databases and other data sources

There are two main components to the .NET Framework: the Common Language Runtime and the
.NET Framework class library. You'll examine both components in this chapter.

264   Microsoft Visual C++/CLI Step by Step

The Common Language Runtime
You’ve already met the Common Language Runtime (CLR) because this is the part of .NET that manag-
es your code as it runs, providing services such as garbage collection. The CLR is a run-time execution
engine that is responsible for executing code within the .NET environment, providing services such as
security, memory management, and remoting (communication between objects in different domains,
processes, or computers). Code that is run by the CLR is known as managed code; code that executes
outside the control of the CLR is unmanaged code. All Microsoft Visual Basic and C# code is managed,
but it’s possible to write both managed and unmanaged code in Microsoft Visual C++ and to have
both types of code working together in the same application.

The Microsoft Intermediate Language
All .NET languages compile down into an intermediate form called Microsoft Intermediate Language
(MSIL, or just IL.)

IL is similar to Java bytecode in that it’s an intermediate form of code produced by the compiler
that can’t be directly executed on a target system. IL code is also portable and is always converted
into native code before it’s executed, which is done by a Just-In-Time (JIT) compiler. This conversion
might happen on demand, function-by-function as an application executes, or all at once when an
application is installed.

One of the great innovations of IL is that it isn’t simply a low-level, machine-independent object
code. In fact, support for object-oriented functionality—such as the ideas of classes, encapsulation
and data-hiding, polymorphism, and inheritance—is built into IL, so you can view it as a type of
object-oriented assembler language. This functionality makes it far more powerful than Java byte-
code, and it makes it possible for you to perform cross-language object-oriented programming, easily
calling members in C++/CLI classes from Visual Basic, and vice-versa, and even inheriting from a
C++/CLI class in Visual Basic.

Note  If you’re interested in seeing what IL looks like, you can use the IL Disassembler tool,
ILDASM, to open a .NET executable and show you the code in IL. There’s an example of how
to do so in the section “Metadata” later in the chapter.

The Common Type System
The Common Type System (CTS) provides a specification for how types are defined, managed, and
used, which is an important part of the .NET cross-language integration. The CTS provides a set of
rules that languages must obey, which helps to ensure that types created in different languages can
interoperate with one another.

	 Chapter 15  The .NET Framework class library    265

The Common Language Specification
The Common Language Specification (CLS) is a set of rules and constraints that compiler and library
writers need to follow to ensure that the languages and code they produce will interoperate with
other .NET languages. The CLS forms a subset of the CTS, and if a language or a library is CLS-compliant,
it will completely interoperate with other CLS-compliant languages.

You’ll see in the online documentation that some .NET member functions are marked as not CLS-
compliant, which means that they might not be accessible from some .NET languages. For example,
functions that use unsigned integers are not CLS-compliant because unsigned integers aren’t supported
by Visual Basic. As a result, unsigned integers are not included in the types specified by the CLS.

The .NET Framework class library
The .NET Framework class library is an object-oriented library of classes that provides all the tools you
need to write a wide variety of applications.

Since Windows was first released, programmers have written Windows applications using the
Windows API (application programming interface). This API gives you a large number of C functions—
several thousand, in fact—that you can call from your applications to interact with Windows. However,
there are two main problems with the Windows API: first, it isn’t object-oriented, and second, it’s a
C library, so it can’t easily be used from every language.

One of the benefits of object-oriented programming is the help that it gives in structuring and
managing large-scale projects. The Windows API has grown to several thousand functions, and it
becomes harder and harder to manage such a large collection of unstructured routines. In addition
to its other benefits (such as encapsulation and polymorphism), object-oriented programming lets
you impose a structure on code. So, for example, a Dialog class can contain all the functions relating
to dialog boxes. This ability makes it much easier to use a library the size of the Windows API.

The second problem with the Windows API is that it’s basically written for C programmers, so it
uses many features that are unique to C, such as pointers and null-terminated strings, which makes
it hard—and sometimes impossible—to use some functionality from languages other than C or C++.
You also tend to need a lot of ugly “plumbing” to interface between languages such as Visual Basic
and the API.

The .NET Framework class library provides a set of classes that can be used from any .NET lan-
guage because it works at the IL level. All .NET languages compile down to the same intermediate
code, and because they all use references and agree on the basic set of value types, they can all use
the classes defined in the class library. This is a huge advantage and provides language interoperability
on a scale never seen before.

266   Microsoft Visual C++/CLI Step by Step

Assemblies
Assemblies are the basic building blocks with which .NET applications are constructed, and they’re the
fundamental unit of deployment and versioning. Assemblies contain IL code, metadata that describes
the assembly and its contents, and any other files needed for run-time operation. An assembly is
therefore much more self-contained than a standard Windows executable or Component Object
Model (COM) object because there is no reliance on external sources of information such as the Win-
dows Registry. Every .NET type is part of an assembly, and no .NET type can exist outside an assembly.

There are several aspects by which assemblies are fundamental to the .NET world:

■■ Versioning  The assembly is the smallest unit to which versioning is applied, and the assembly
manifest describes the assembly’s version together with the versions of any assemblies on
which it depends. This information means that it’s possible to check that components with the
wrong version information aren’t being used at run time.

■■ Deployment  Assemblies are loaded only as needed, which makes them highly suitable for
distributed applications.

■■ Type  A type’s identity includes the assembly in which it resides. Two types with the same
name living in two different assemblies are considered to be two completely different types.

■■ Security  The boundary between assemblies is where security permissions are checked.

Metadata
.NET classes are self-describing, which means that they carry descriptive information with them in the
.exe or .dll file. This information, called metadata, includes the following:

■■ The name, version, and culture-specific information (such as the language and calendar used)
for the assembly

■■ The types that are exported by the assembly

■■ Other assemblies on which this one depends

■■ Security permissions needed to run

■■ Information for each type in the assembly: name, visibility, base class, interfaces implemented,
and details of members

■■ Additional attribute information

Most of the metadata is standard and is created by the compiler when it produces the IL code, but
you can use attributes to add extra metadata information.

	 Chapter 15  The .NET Framework class library    267

The following exercise shows you how to modify the standard metadata produced by the compiler.

1.	 Start Microsoft Visual Studio 2012 and create a new CLR Console Application project named
Meta1.

2.	 Open Solution Explorer and look at the Source Files folder.

You can see that the project contains three C++ source files: Meta1.cpp is the code for the
application, AssemblyInfo.cpp contains definitions of the standard metadata items that you
can modify, and StdAfx.cpp is there to include the StdAfx.h header file.

3.	 Open AssemblyInfo.cpp.

The file contains a number of lines that look like the following:

[assembly:AssemblyTitleAttribute("Meta1")];
[assembly:AssemblyDescriptionAttribute("")];
[assembly:AssemblyConfigurationAttribute("")];
[assembly:AssemblyCompanyAttribute("")];
[assembly:AssemblyProductAttribute("Meta1")];
[assembly:AssemblyCopyrightAttribute("Copyright (c) 2012")];
[assembly:AssemblyTrademarkAttribute("")];
[assembly:AssemblyCultureAttribute("")];

Metadata is added to C++ code by enclosing declarations in square brackets ([]). Metadata is
most often attached to code to describe classes and functions. Here, the keyword assembly: at
the start of the attribute means that this attribute applies to an assembly, as opposed to being
attached to code. There’s a set of standard attributes that you can use to change the meta-
data compiled into an assembly, and most of them are listed in AssemblyInfo.cpp.

4.	 Edit the AssemblyCompanyAttribute line to contain some suitable name, such as the following:

[assembly:AssemblyCompanyAttribute("City Power & Light")];

5.	 Build the project, which automatically creates the assembly for you. How can you be sure that
the metadata in the assembly reflects your change? One way to find out is to use ILDASM,
which is part of the .NET SDK. On my system, this is located in the folder \Program Files (x86)\
Microsoft SDKs\Windows\v8.0A\bin\NETFX 4.0 Tools.

Note  I am using a prerelease version of Windows 8 and Visual Studio 2012, so the
location of ildasm.exe might be different on your system.

6.	 When the ILDASM window opens, use the File menu to navigate to the Meta1.exe executable
and open it. You should see something like the screen shot that follows.

268   Microsoft Visual C++/CLI Step by Step

7.	 Double-click MANIFEST, which opens a separate window displaying the assembly metadata.

At the top of this listing are the details of the assemblies on which this executable depends.
Scroll down until you find the AssemblyCompanyAttribute line, which should read something
like the following:

.custom /*0C000005:0A000009*/ instance void
 ['mscorlib'/* 23000001 */]
'System.Reflection'.'AssemblyCompanyAttribute'
/* 0100000D */::.ctor(string) /* 0A000009 */
= (01 00 16 41 63 6D 65 20 52 6F 63 6B 65 74 20 53
 // ...City Power &
 6C 65 64 2C 20 49 6E 63 2E 00 00) // Light...

Although the contents are presented in hexadecimal, you can see that the metadata does
reflect the change you made to the project.

The .NET Framework namespaces

The .NET Framework class library is made up of a set of classes, interfaces, structures, and enumera-
tions that are contained in over 400 namespaces. This section begins by explaining how to use
namespaces in C++/CLI code and then goes on to list some of the major .NET namespaces, together
with brief details of their function and content.

	 Chapter 15  The .NET Framework class library    269

You’ve already encountered .NET namespaces in use in C++/CLI code when you’ve used the C++
using keyword, as in the following example:

using namespace System::Collections;

As with traditional C++ namespaces, .NET namespaces provide an additional level of scoping that
helps you to organize code and guard against name clashes. Two classes with the same name can be
used in an application, provided that they belong to different namespaces. A type name that includes
the namespace information is called the fully qualified name, as illustrated in the following examples:

System::Collections::Generic::List // the List<T> class from
 // System::Collections::Generic
System::Threading::Thread // the Thread class from System::Threading

Namespace names in .NET typically consist of more than one word. In C++/CLI, the components
of the name are separated by the scope resolution operator (::). In many other .NET languages such
as C# and Visual Basic, the components are separated by using a period (.), so in C#, the preceding
examples would be as follows:

System.Collections.Generic.List
System.Threading.Thread

All classes, interfaces, structures, and enumerations that are part of the .NET Framework class
library belong to a namespace. Most of the namespaces provided by Microsoft begin with one of
two prefixes. Those that start with System have been developed as part of the .NET Framework class
library, whereas those beginning with Microsoft have been developed by other product groups within
Microsoft.

Namespace names can have any number of components, but there’s no hierarchical relationship
implied in names that contain the same root components. The hierarchical nature of namespace
names simply gives you a way to organize your classes. So, for example, System::Collections::Generic
and System::Collections both contain collections, yet they aren’t necessarily related in any other way.

Note  If you are a Java programmer, keep in mind that although .NET namespaces look
very much like Java package names, there’s no relationship between namespace names and
directory paths as there is in Java.

There’s no requirement that all the classes belonging to one namespace are defined in the same
.dll file or that a single .dll file contains classes from only one namespace.

270   Microsoft Visual C++/CLI Step by Step

Using namespaces in C++ applications
C++/CLI applications employ the #using preprocessor directive to import metadata into applications.
Remember that metadata is information that describes the types in an assembly, and it includes the
fully qualified names of all the types. For example, if the compiler sees a line such as

#using <mscorlib.dll>

it loads the .dll file and reads the metadata for all the types that are defined there. Because
mscorlib.dll contains most of the core .NET Framework classes, it imports the metadata for a very
large number of types.

Note  You can only use #using to reference assemblies defined in .dll files.

The #using keyword means that you have to know which .dll file holds the class or classes that you
want to use. Your typical source for this information is the online help.

Some of the fully qualified names can get rather long. Thus, it’s common to use a traditional using
directive to specify namespace names so that you can use unqualified names, as shown here:

// Read the metadata for MSCORLIB
#using <mscorlib.dll>

// Import all the names
using namespace System::Collections::Generic;

// Now you can use List without having to qualify it
List<int> ^pal = gcnew List<int>();

The System namespace
The System namespace, defined in mscorlib.dll, contains a lot of fundamental classes, including the
following:

■■ Base classes for commonly used value and reference types, plus the base class for arrays

■■ Events and event handlers

■■ Delegates and interfaces

■■ Attributes

■■ Exceptions

■■ Math

	 Chapter 15  The .NET Framework class library    271

■■ Application environment management

■■ Garbage collection

■■ Local and remote application invocation

■■ Data type conversion

You’ve already seen a lot of types from System in earlier chapters, and some of the other classes
are rather obscure, so I won’t go through them in detail. There are a few points that are worth men-
tioning about some of the classes in System; these are covered in the following sections.

Basic types
System implements all the basic types defined by the CTS, and you can find these listed in the follow-
ing table (which also appears in Chapter 9, “Value types”).

Value type Description C++/CLI equivalent type

Byte An 8-bit unsigned integer unsigned char

SByte An 8-bit signed integer char

Int16 A 16-bit signed integer short

Int32 A 32-bit signed integer int or long

Int64 A 64-bit signed integer __int64 or long long

UInt16 A 16-bit unsigned integer unsigned short

UInt32 A 32-bit unsigned integer unsigned int or unsigned long

UInt64 A 64-bit unsigned integer unsigned __int64 or unsigned long
long

Single A single-precision, 32-bit, floating-
point number

float

Double A double-precision, 64-bit, floating-
point number

double

Boolean A Boolean value bool

Char A 16-bit Unicode character wchar_t

IntPtr A signed integer whose size depends
on the platform

No built-in type

UIntPtr An unsigned integer whose size de-
pends on the platform

No built-in type

Keep in mind that several of the types—namely the unsigned integer types and SByte—aren’t
CLS-compliant, so be wary of using them when you’re writing code that’s going to be used from other
.NET languages.

All .NET languages map these types to native types, so C++/CLI maps int to System::Int32, but you
can also use the underlying types directly, if you want.

272   Microsoft Visual C++/CLI Step by Step

Floating-point types
The Single and Double types implement IEEE-754 floating-point arithmetic. This means that every
operation has a defined result, so you never get a divide-by-zero error when performing floating-
point math; instead, you get an answer of infinity. The floating-point classes have values to represent
positive and negative infinity and “not a number” (often represented as NaN), as well as methods to
test for them, as shown in the following example:

double top = 1.0;
double bottom = 0.0;

double result = top/bottom;

if (result == Double::PositiveInfinity)
 Console::WriteLine("+infinity");
else if (result == Double::NegativeInfinity)
 Console::WriteLine("-infinity");
else if (result == Double::NaN)
 Console::WriteLine("Not a number");

Floating-point and decimal arithmetic
Chapter 8, “Inheritance,” points out that floating-point calculations are subject to rounding
errors. This is because of the way that IEEE-754 encodes values by using base 2, which means it
is not possible to represent some decimal numbers exactly. In the same way that pi cannot be
exactly represented as a decimal (3.14159…), a decimal value such as 0.1 cannot be exactly rep-
resented in base 2 arithmetic: it comes out as .00011001100110011… with the “0011” repeat-
ing forever. This means that you can only ever get an approximation to 0.1, in the same way
that we can only ever get an approximation to the correct value of pi, and so we see rounding
errors as these approximations accumulate.

There are two ways around this problem. The first is to use the System::Decimal type, which
performs arithmetic in base 10 and so does not get these rounding errors, but which is slower.
The second is to use integer arithmetic with scaling. For example, instead of using 123.45, use
12345 and divide the result by 100.

The Collections namespaces
Chapter 12, “Arrays and collections,” looks at the Collections namespaces, in particular System::
Collections::Generic. System::Collections::Generic is implemented in mscorlib.dll, so to use it, you’ll
have to include a #using statement, as demonstrated here:

#using <mscorlib.dll>

	 Chapter 15  The .NET Framework class library    273

The following table lists the main classes that you’ll find in the System::Collections::Generic
namespace.

Class Description

Dictionary<K,V> A collection of key/value pairs

HashSet<T> A set of objects

LinkedList<T> A doubly linked list of objects

List<T> A strongly typed list of objects, retrievable by index

Queue<T> A FIFO collection of objects

SortedList<K,V> A collection of key/value pairs sorted on the key

SortedSet<T> A collection of objects maintained in sorted order

Stack<T> A LIFO stack

The Collections interfaces
The System::Collections::Generic namespace also defines a series of interfaces that are used to define
the behavior of the collection classes. The collection classes themselves implement one or more of
these interfaces, and you can use them as the basis for writing your own collection classes. The main
interfaces are listed in the following table.

Interface Description

ICollection<T> Defines the size, enumerator, and synchronization meth-
ods for all collections

IComparer<T> Defines a method for comparing two objects

IDictionary<K,V> Implemented by collections that manage key/value pairs,
such as Hashtable and ListDictionary

IEnumerable<T> Defines the GetEnumerator method, which returns an
IEnumerator; implemented by almost all collections

IEnumerator<T> Defines the properties and methods of enumerators

IList<T> Implemented by classes that define indexed collections
of objects

IReadOnlyCollection<T> Represents a strongly typed, read-only collection of
elements

ISet<T> Implemented by classes that manage sets of objects

274   Microsoft Visual C++/CLI Step by Step

The Diagnostics namespace
The System::Diagnostics namespace provides a number of classes with which you can do the following:

■■ Trace application execution

■■ Interact with the debugger

■■ Use the system event log

■■ Start system processes

■■ Monitor system performance

All the classes in System::Diagnostics are implemented in system.dll.

The IO namespace
The System::IO namespace, defined in mscorlib.dll, provides the classes that implement the .NET
input/output (I/O) functionality. The main classes in this namespace are described in the following
table.

Class Description

BinaryReader Reads .NET primitive types from a byte stream

BinaryWriter Writes .NET primitive types to a byte stream

Directory Contains static methods for operating on directories

DirectoryInfo Represents a path to a directory and contains methods
for operating on the directory path

File Contains static methods for operating on files

FileInfo Represents a path to a file and contains methods for
operating on the file path

FileStream Reads and writes to files by using streams

FileSystemInfo The base class for FileInfo and DirectoryInfo

FileSystemWatcher Watches for changes in the file system and fires events
when changes occur

IOException The exception thrown when I/O errors occur

MemoryStream Reads and writes streams of bytes to and from memory

Path Represents directory strings in a platform-independent
way

Stream The abstract base for the stream classes

StreamReader Reads Unicode characters from a byte stream

StreamWriter Writes Unicode characters to a byte stream

StringReader Reads Unicode characters from a string

StringWriter Writes Unicode characters to a string

TextReader The base class for StreamReader and StringReader

TextWriter The base class for StreamWriter and StringWriter

	 Chapter 15  The .NET Framework class library    275

As with all the .NET Framework class library classes, these classes are language-independent.
They can be used alongside or in place of the C++ stream classes. Chapter 19, “Writing a service by
using Windows Communication Foundation,” delves deeper into some of the System::IO classes. The
System::IO classes are in mscorlib.dll.

The Windows namespaces
The System::Windows prefix identifies 50 namespaces that together provide the functionality of
Windows Presentation Foundation (WPF), an advanced user interface (UI) framework for .NET intro-
duced in version 3.0. WPF provides all the tools you need to create modern UIs, including support
for forms-based applications, 2D and 3D graphics, typography and printing, run-time animation, and
comprehensive support for playing media.

Note  In earlier versions of the .NET Framework, you built UIs by using a technology called
Windows Forms, which was heavily influenced by Visual Basic.

One key feature of WPF is its use of XAML, an XML markup language, to define user interfaces.
This makes it possible to separate the UI from the code, which allows teams to use design tools such
as Microsoft Expression Blend in addition to coding tools such as Microsoft Visual Studio.

The Net namespaces
Networking support is provided by a number of namespaces in the System::Net family. System::Net itself
provides an interface to many of the protocols commonly used today, such as manipulating IP addresses,
making DNS lookups, talking to HTTP and FTP servers, managing cookies, and authentication.

System::Net::Sockets provides an implementation of the Berkeley Sockets protocol and provides a
.NET wrapper around the Windows WinSock API, whereas System::Net::WebSockets provides a man-
aged implementation of the WebSocket interface.

The ServiceModel namespaces
The System::ServiceModel namespaces (over 30 of them) together implement Windows Communica-
tion Foundation (WCF), a technology introduced in .NET 3.0 for creating distributed, service-oriented
applications.

With WCF, you can build applications out of components hosted in other processes, and even on
other computers. This has long been possible, but the technologies used were very different, depend-
ing on where your components were located (same process, different process on the same computer,
or different process on another computer) and the communication mechanism you wanted to use
(TCP/IP, HTTP, messaging).

WCF provides an integrated framework for creating, deploying, and managing distributed compo-
nents and their clients. Chapter 19 shows you how to write a web service by using WCF.

276   Microsoft Visual C++/CLI Step by Step

The Xml namespaces
XML is heavily used throughout the .NET Framework, and several namespaces provide support for
creating and manipulating XML, including the following:

■■ System::Xml  Provides the basic classes needed for processing XML

■■ System::Xml::Linq  Makes it possible to use Language-Integrated Query (LINQ) to work with
XML data

■■ System::Xml::Schema  Provides support for XML schemas

■■ System::Xml::Serialization  Gives you the ability to serialize .NET objects to and from XML

■■ System::Xml::XPath  Contains the XPath parser and evaluation engine

■■ System::Xml::Xsl  Contains the Extensible Stylesheet Language (XSL) processor

Using these classes, it’s possible to perform all the manipulation of XML that you’ll ever need to do.
These classes make the .NET Framework one of the most productive environments for XML program-
ming. You can find the XML classes in System.Xml.dll, with the LINQ classes in System.Xml.Linq.dll.

The Data namespaces
The System::Data namespaces hold the classes that implement ADO.NET, a framework with which
you can build components to manage data from a number of data sources. Data from different data
sources is provided by data providers, five of which are shipped with the .NET Framework.

■■ System.Data.OleDb  Object Linking and Embedding Database (OLE DB)–based technology
that makes it possible to use many different kinds of data sources—such as relational data-
base tables, Microsoft Excel spreadsheets, and even text files—as if they were databases.

■■ System.Data.Odbc  The ODBC provider gives access to Open Database Connectivity (ODBC)
data sources, including Microsoft Access databases.

■■ System.Data.SqlClient  This provider is optimized for use with Microsoft SQL Server.

■■ System.Data.OracleClient  The provider for Oracle makes it possible to work with Oracle
databases from .NET code.

■■ System.Data.EntityClient  Entity Framework (EF) is an object-relational mapping framework
that can be used from ADO.NET, making it possible to map managed objects to a backing
database automatically.

	 Chapter 15  The .NET Framework class library    277

The most important class in the System::Data namespace itself is DataSet, which represents an
in-memory cache of data retrieved from a data source. A DataSet consists of one or more DataTable
objects, and these in turn consist of a collection of DataColumn and DataRow objects. You can use
DataSets to work in disconnected mode. This means retrieve data from a database into a DataSet, dis-
connect from the database server and work with the data locally, and then update the database from
the DataSet later.

The Web namespaces
Because one of the main reasons for introducing the .NET Framework was to make it easier to build
web applications, it’s perhaps no surprise that the .NET Framework contains a number of namespaces
related to web programming. These are all related to Microsoft ASP.NET, the latest version of Micro-
soft Active Server Pages technology that is optimized to work in the .NET environment.

The most significant of the Web namespaces are listed here:

■■ System::Web  This provides the basic functionality for browser-to-server communication over
HTTP, including the HttpRequest and HttpResponse classes that enable an ASP.NET page to
exchange data with the client by using HTTP.

■■ System::Web::Mail  This makes it possible for you to prepare and send email attachments by
using the Simple Mail Transfer Protocol (SMTP) service that is built in to the Windows operat-
ing system.

■■ System::Web::Security  This provides classes that implement security in ASP.NET.

■■ System::Web::Services  This provides the classes with which you can build web services.

■■ System::Web::UI  This contains all the classes with which you can build server-side controls.

The features provided by two of these namespaces merit particular mention. A web service is a
programmable entity living on a web server that can be accessed by using standard Internet proto-
cols. What this means in practice is that you can expose a function on a web server that others can
call. Communication between client and server uses standard protocols such as HTTP, and data is
usually passed to and from the web service in XML format by using Simple Object Access Protocol
(SOAP). The use of XML over HTTP makes it possible to access web services easily from clients written
in just about any programming language on any platform. It’s also possible to find out what services
a web server supports, and it’s very easy in Visual Studio 2012 to write clients that make use of web
services.

278   Microsoft Visual C++/CLI Step by Step

With the System::Web::UI namespaces, you can build server-side controls. You program these as if
they were normal controls, but their code executes on the server. The System::Web::UI::HtmlControls
namespace contains classes that represent HTML server controls that map directly to standard HTML
elements such as buttons and forms. System::Web::UI::WebControls is more abstract, and you can use
it to program server-side controls that might not map directly to HTML.

Quick reference

To Do this

Use data structures such as dynamic arrays, lists, and hash
tables.

Use the classes in the System::Collections::Generic
namespace.

Create a form-based application. Use the classes in System::Windows::Forms, and derive a
class from System::Windows::Forms::Form.

Work with XML. Look at the classes in the System::Xml namespace.

Trace application execution, interact with the event log,
or monitor system performance.

Use the classes in the System::Diagnostics namespace.

Work with databases by using ADO.NET. Look at the System::Data namespaces.

		 279

PART III

Using the .NET
Framework

CHAPTER 16	 Working with files . 281

CHAPTER 17	 Reading and writing XML . 305

CHAPTER 18	 Using ADO.NET . 333

CHAPTER 19	 Writing a service by using Windows
	 Communication Foundation 351

CHAPTER 20	 Introducing Windows Store apps 369

CHAPTER 21	 More about Windows Store apps 397

		 281

C H A P T E R 1 6

Working with files

After completing this chapter, you will be able to:

■■ Understand how the Microsoft Windows .NET Framework performs input/output (I/O).

■■ Identify the classes that make up the System::IO namespace.

■■ Perform text I/O.

■■ Read and write files.

■■ Work with files and directories.

■■ Perform binary I/O.

You’ve already used the Console class to perform I/O to and from the console. This chapter intro-
duces you to the System::IO namespace, which contains the classes, structures, and enumerations

that implement the Microsoft .NET I/O model.

Note  If you know anything about the Java I/O mechanism as implemented in the java.io
package, you’ll find it easy to start working with .NET I/O because the two have many
similarities.

282   Microsoft Visual C++/CLI Step by Step

The System::IO namespace

The System::IO namespace contains all the classes that are used for binary and text I/O as well as
classes that help you to work with files and directories. The following table lists the main classes in the
namespace:

Class Description

BinaryReader Reads primitive data types as binary values

BinaryWriter Writes primitive data types as binary values

BufferedStream A stream class that buffers reads and writes to another
stream

Directory Has static methods for working with directories

DirectoryInfo Has non-static methods for working with directories

File Has static methods for working with files

FileInfo Has non-static methods for working with files

FileStream A class for reading and writing files by using a stream

FileSystemInfo The abstract base class for DirectoryInfo and FileInfo

FileSystemWatcher Watches for changes to the file system and raises events
when changes occur

IOException The exception thrown by classes in the System::IO
namespace

MemoryStream A stream class that reads and writes memory

Path Helps you work with directory strings in a platform-
independent way

Stream The abstract base class for all the stream classes

StreamReader A TextReader that reads characters from a byte stream

StreamWriter A TextWriter that writes characters to a byte stream

StringReader A TextReader that reads from a string

StringWriter A TextWriter that writes to a string

TextReader The abstract base class for StreamReader and
StringReader

TextWriter The abstract base class for StreamWriter and StringWriter

The I/O-oriented classes in System::IO can be divided into the following three groups:

■■ The Stream classes, which are designed for I/O of streams of bytes

■■ The BinaryReader and BinaryWriter classes, which are used to input and output .NET primitive
types, such as Int32 and Double, in binary form

■■ The TextReader and TextWriter classes, which are used for character-mode I/O

This chapter focuses on the latter two groups.

	 Chapter 16  Working with files    283

Implementing text I/O by using readers and writers

TextReader and TextWriter are the abstract base classes for a group of classes that are used to
read and write characters. There are four classes in System::IO that derive from these two bases—
StreamReader, StreamWriter, StringReader, and StringWriter, as well as with several other much more
specialized writer classes in other namespaces.

Using TextWriter
The TextWriter class has a number of useful methods, as summarized in the following table:

Method Description

Close Closes the writer and releases any resources that it’s using

Dispose Releases all unmanaged resources used by the writer and
optionally releases managed resources, as well

Flush Causes all buffered data to be written to the underlying
device

FlushAsync Causes all buffered data to be written asynchronously to
the underlying device

Synchronized Creates a thread-safe wrapper for the writer

Write Writes text without a newline

WriteAsync Writes text without a newline asynchronously

WriteLine Writes text with a newline

WriteLineAsync Writes text with a newline asynchronously

As you might guess from the inclusion of the Write and WriteLine functions in the table, the
Console class uses a TextWriter object to perform output.

Asynchronous I/O
You might have noticed that the TextWriter class contains several methods whose names end
with Async. Normally, I/O operations prevent your code from executing further until they finish,
a condition known as blocking. Asynchronous I/O helps overcome this by performing I/O in the
background, letting your code continue executing while the input or output operation runs in
parallel. This is very useful when you don’t need to know that the operation has finished, al-
though it is possible to find out when the operation finishes. Setting up and working with asyn-
chronous I/O can be complex and is beyond what we can cover in this introductory chapter.

To show you how the I/O classes work together, let’s look at how you use the StreamWriter class.
Before we start, though, it’s important that you understand how the .NET Framework implements I/O.
Rather than create a number of classes that each perform an end-to-end I/O task—such as “write a

284   Microsoft Visual C++/CLI Step by Step

string to a file” or “read a number from the keyboard”—.NET implements a number of smaller special-
purpose classes that you can plug together to achieve the effect you want. This means that .NET
doesn’t have a “write characters to a file” class. Instead, it has a “write characters to a byte stream”
class and a “read bytes from a stream and write them to a file” class. If you plug the output from the
first class into the input of the second, you end up writing characters to a file.

This model is flexible because you can take binary or character data, convert it into bytes, and then
pass the bytes to any of several classes to output them to files, memory, or a string. Data is transferred
between the classes as streams of bytes, a method that provides a flexible base on which to build. The
basic functionality for handling byte streams is provided by the Stream class, and you can build your
own specialized I/O classes on top of Stream, if you need to.

With that information in mind, the exercise that follows shows you how to write character data to
a text file by using a TextWriter. Using the plug-and-play model for I/O that the .NET Framework uses,
you need to create the following two objects:

■■ A FileStream object that takes bytes as input and writes them to a file

■■ A StreamWriter object that takes text and converts it to a byte stream

So, let’s get started.

1.	 Start Microsoft Visual Studio 2012 and create a new CLR Console Application project named
CppWriter.

2.	 The TextWriter and file I/O classes are part of System::IO, so include a using declaration at the
beginning of the application, as shown here:

using namespace System::IO;

3.	 In the main function, create a FileStream object to write to a file.

// Create a FileStream
try
{
 FileStream ^fs = gcnew FileStream("output.txt", System::IO::FileMode::Create);
}
catch(System::Exception ^pe)
{
 Console::WriteLine(pe->ToString());
}

The FileStream constructor takes a file name and a mode. In this case, the file is going to be
created if it doesn’t exist or overwritten if it does. I’ve used output.txt as the file name, but you
can specify any path and file name you like for the new file.

Note  See the section “The FileStream class” later in this chapter for more details on
how to construct FileStream objects.

	 Chapter 16  Working with files    285

The code is enclosed in a try block because a lot of things could go wrong when trying to
open this file.

4.	 After you have initialized the FileStream object, create a StreamWriter that uses the FileStream,
as demonstrated here:

try
{
 // Create a FileStream
 FileStream ^fs = gcnew FileStream("output.txt", FileMode::Create);

 // Create a StreamWriter
 StreamWriter ^sw = gcnew StreamWriter(fs);
}
catch(System::Exception ^pe)
{
 Console::WriteLine(pe->ToString());
}

The StreamWriter constructor takes a handle to a Stream object as its one argument.

5.	 You can now use the Write and WriteLine functions to output text to the file. Place the follow-
ing lines inside the try block:

// Write some text
sw->WriteLine("First line");
sw->WriteLine("Second line");
sw->WriteLine("Third line");

6.	 Ensure that all output is flushed to the file and close the stream.

// Close the file
sw->Flush();
sw->Close();

Note  WriteLine performs buffered output, which means that it doesn’t necessarily
write lines to the file every time you call the function. Instead, it maintains an inter-
nal buffer and writes the buffer to hard disk as necessary. One hard disk access per
buffer is more efficient than writing individual lines, but you need to call Flush at the
end of the code to ensure that output currently in the buffer is transferred to the
file.

7.	 Build and run the application.

A text file named output.txt should appear in the CppWriter project directory. The file con-
tains the three lines of text written by the CppWriter application.

286   Microsoft Visual C++/CLI Step by Step

The FileStream class
FileStream is used to pass bytes from some other class—such as StreamWriter—to a file. There
are several overloaded constructors to this class with which you can specify combinations of the
following:

■■ The file name

■■ The file mode, which determines how the file is going to be opened

■■ The type of access required

■■ The sharing options

The file mode is represented by members of the FileMode enumeration, which are described in the
following table:

Member Description

Append Opens an existing file or creates a new file and appends
text to the end.

Create Creates a new file or opens an existing one and over-
writes it.

CreateNew Creates a new file, throwing an exception if the file
already exists.

Open Opens an existing file.

OpenOrCreate Opens an existing file or creates a new one.

Truncate Opens an existing file and truncates its size to 0 bytes. An
exception will be thrown if the file doesn’t exist.

The access is represented by members of the FileAccess enumeration, as listed in the following
table:

Member Description

Read Represents read access

ReadWrite Represents read/write access

Write Represents write access

Similarly, the sharing access is specified by the FileShare enumeration, as presented in the following
table:

Member Description

None No sharing

Read Represents shared read access

ReadWrite Represents shared read/write access

Write Represents shared write access

Delete Allows subsequent deletion of a file

	 Chapter 16  Working with files    287

The following example shows how to construct a FileStream by using these permissions:

FileStream ^fs2 = gcnew FileStream(
 "foo.txt", // the filename
 FileMode::Create, // create or overwrite
 FileAccess::ReadWrite, // request read/write access
 FileShare::Read); // allow shared reading

Note  Although you’ll usually use the FileStream class with other writer classes, you can use
its Read and Write methods to input and output bytes directly.

Using TextReader
The structure and operation of the TextReader class parallels that of TextWriter. The following table
lists the methods provided for you by TextReader:

Method Description

Close Closes the reader and releases any resources that it’s
using

Dispose Releases all unmanaged resources used by the reader
and, optionally, releases managed resources, as well

Peek Returns the next character from the input stream without
removing it

Read Reads one or more characters from the input stream

ReadAsync Reads one or more characters from the input stream
asynchronously

ReadBlock Reads a block of characters

ReadBlockAsync Reads a block of characters asynchronously

ReadLine Reads a line

ReadLine Reads a line asynchronously

ReadToEnd Reads to the end of the input stream

ReadToEndAsync Reads asynchronously to the end of the stream

Synchronized Provides a thread-safe wrapper for TextReader objects

As with TextWriter, you use TextReader by plugging a reader into an object that is going to act as a
source of bytes. There are several of these, including the one you’ve already seen, FileStream.

The exercise that follows shows you how to write an application similar in functionality to the Linux
less command, which reads a file and echoes its contents to the screen, a few lines at a time. After it
has displayed some lines, the user is presented with the choice of pressing the Enter key to continue
or pressing Q to quit.

288   Microsoft Visual C++/CLI Step by Step

1.	 Create a new CLR Console Application project named CppReader.

2.	 Include a using declaration for System::IO at the top of the project.

using namespace System::IO;

3.	 Add code to main to ensure that the user has entered a file name.

The argument to main is an array of the command-line arguments, not including the applica-
tion name.

// Check for required argument
if (args->Length < 1)
{
 Console::WriteLine("Usage: CppReader path");
 return 0;
}

String ^path = args[0];

If the user hasn’t given an argument, an error message is printed and the application exits. If
the user has provided it, the argument is saved for later use.

4.	 It’s wise to check that the path represents an existing file before continuing, so add the follow-
ing code:

if (!File::Exists(path))
{
 Console::WriteLine("Invalid filename!");
 return -1;
}

The File::Exists method checks whether a file with the specified name exists, returning false if
it doesn’t. It will also return false if you give the name of a directory rather than a file. Notice
the return value of –1. It’s a common convention for C/C++ applications to return 0 to indicate
success, with negative values being used to denote error conditions.

5.	 Start listing the file. The first step is to create a FileStream and connect it to a StreamReader.

try
{
 FileStream ^fs = gcnew FileStream(path, System::IO::FileMode::Open);
 StreamReader ^sr = gcnew StreamReader(fs);
}
catch(System::Exception ^pe)
{
 Console::WriteLine(pe->Message);
}

In this case, you’re opening the file by using FileMode::Open, which will throw an exception if
the file doesn’t already exist.

	 Chapter 16  Working with files    289

6.	 Listing the file is done in this loop, which you should place after creating the StreamReader
object, like this:

int count = 0;
for(;;)
{
 String ^line = sr->ReadLine();
 count++;
 // If there are no more lines, break out of the loop
 if (line == nullptr) break;

 Console::WriteLine(line);

 if (count % 20 == 0)
 {
 Console::Write("--more-- ");
 String ^response = Console::ReadLine();
 if (response->Equals("q")) break;
 count = 0;
 }
}

Console::WriteLine("-- end --");

The count variable is going to be used to count the lines as they’re read so that the applica-
tion knows where to break. The loop reads a line into a String by using the ReadLine function
of StreamReader; if there are no more lines to read, a null will be returned. The line is then
echoed to the console and the count checked. I’ve set the number of lines displayed at one
time to an arbitrary value of 20; when the count is exactly divisible by 20, the application
writes “--more--” to the console and waits for the user to input something. If the user presses
a lowercase q, the application stops; otherwise, it outputs the next set of lines.

Remember that for(;;) sets up an infinite loop, which you need to terminate somehow. In this
example, when there are no more lines to read, the call to ReadLine returns nullptr, and this
causes the loop to terminate.

7.	 Build and run the application, giving the name of a suitable text file as the argument.

You can do this in one of two ways. The first is to open a command prompt, navigate to the
directory containing the executable file, and then execute the application from the command
line just as you would with any other application.

The second is to run the application from within Visual Studio, providing the command-line
arguments that you need. In Solution Explorer, right-click the project name, and then, in the
shortcut menu that appears, click Properties. When the Properties page appears, in the pane
on the left, select Configuration Properties, click Debugging, and then enter the file name into
the Command Arguments box in the center pane.

290   Microsoft Visual C++/CLI Step by Step

Working with files and directories

The System::IO namespace contains several classes to help you work with files and directories.

Getting information about files and directories
The Directory and DirectoryInfo classes provide you with functions to help you work with directories.
The difference between them is that the Directory class only contains static methods, whereas
DirectoryInfo contains non-static instance methods. Why the need for two different classes? It’s
necessary for .NET to perform a security check before allowing you access to a directory or a file. The
Directory class performs this check every time you use one of its static methods, which can be time-
consuming. Objects of the DirectoryInfo class, on the other hand, work with one directory, and the
security check is done once when the object is constructed. It can, therefore, be a lot more efficient to
use DirectoryInfo if you’re going to perform multiple operations on one directory. The following table
lists the main methods of the Directory class:

Method Description

CreateDirectory Creates a directory

Delete Deletes a directory and, optionally, its subdirectories

EnumerateDirectories Returns an enumerable collection of the directories in a
specified path

EnumerateFiles Returns an enumerable collection of the files in a speci-
fied path

EnumerateFileSystemEntries Returns an enumerable collection of all the files and
directories in a specified path

Exists Checks whether a directory exists

GetCreationTime Gets the creation time of a directory

GetCurrentDirectory Returns a string representing the path to the application’s
current directory

GetDirectories Gets an array of strings representing the names of subdi-
rectories in a given directory

GetDirectoryRoot Returns the root portion of a path

GetFiles Gets an array of strings representing the names of the
files in a given directory

GetFileSystemEntries Gets an array of strings representing the names of the
files and directories in a given directory

GetLastAccessTime Gets the last access time for the directory

GetLastWriteTime Gets the last write time for the directory

GetLogicalDrives Gets a list of the logical drives on the computer

GetParent Gets the parent directory of a specified directory

Move Moves a directory and its contents

SetCreationTime Sets the creation time for a directory

	 Chapter 16  Working with files    291

Method Description

SetCurrentDirectory Sets the application’s current directory

SetLastAccessTime Sets the last access time for the directory

SetLastWriteTime Sets the last write time for the directory

The following two tables list the properties and methods of the DirectoryInfo class:

Property Description

Attributes Gets or sets the FileAttributes for the directory

CreationTime Gets or sets the creation time for the directory

Exists Value is true if the directory path exists

Extension Gets the extension part of the directory name

FullName Gets the full path of the directory

LastAccessTime Gets or sets the time when the directory was last accessed

LastWriteTime Gets or sets the time at which the directory was last
written

Name Represents the name of the directory

Parent Gets a DirectoryInfo object representing the parent of this
directory

Root Gets a DirectoryInfo object representing the root portion
of a directory path

Method Description

Create Creates a directory

CreateSubdirectory Creates one or more subdirectories

Delete Deletes a directory and its contents

EnumerateDirectories Returns an enumerable collection of the directories in a
specified path

EnumerateFiles Returns an enumerable collection of the files in a speci-
fied path

EnumerateFileSystemEntries Returns an enumerable collection of all the files and
directories in a specified path

GetDirectories Gets an array of DirectoryInfo objects representing the
subdirectories of this directory

GetFiles Gets an array of FileInfo objects representing the files in
this directory

GetFileSystemInfos Gets an array of FileSystemInfo objects representing the
directories and files in this directory

MoveTo Moves the directory and its contents

ToString Returns the fully qualified path as a string

292   Microsoft Visual C++/CLI Step by Step

Two classes, File and FileInfo, are used to work with files. Like the Directory and DirectoryInfo
classes discussed earlier, File contains static methods, and FileInfo contains non-static instance
methods. The following table lists the methods provided by the File class:

Method Description

AppendAllLines Appends lines to a file, creating it if necessary, and then
closes it

AppendAllText Appends a string to a file, creating it if necessary, and
then closes it

AppendText Appends text to a file, creating the file if it doesn’t already
exist

Copy Copies a file

Create Creates a new file

CreateText Creates a new text file

Delete Deletes a file

Exists Returns true if a file exists

GetAttributes Returns the file attributes

GetCreationTime Returns the file’s creation time

GetLastAccessTime Returns the file’s last access time

GetLastWriteTime Returns the file’s last write time

Move Moves a file to a new location, with the option of renam-
ing it

Open Opens a FileStream for read/write access to a file

OpenRead Opens a FileStream for read-only access to a file

OpenText Opens a FileStream to read from a text file

OpenWrite Opens a FileStream for read/write access to a file

Replace Replaces the content of one file with another, deleting the
original and creating a backup of the replaced file

SetAttributes Sets the file attributes

SetCreationTime Sets the file’s creation time

SetLastAccessTime Sets the file’s last access time

SetLastWriteTime Sets the file’s last write time

WriteAllLines Creates a new file, writes lines to it, and then closes it

WriteAllText Creates a new file, writes a string to it, and then closes it

	 Chapter 16  Working with files    293

The following two tables list the main properties and methods exposed by the FileInfo class:

Property Description

CreationTime Gets or sets the creation time of the directory

Directory Returns a DirectoryInfo object representing the file’s
parent directory

DirectoryName Returns a string representing the file’s full path

Exists Returns true if the file exists

FullName Gets the full path of the directory or file

LastAccessTime Gets or sets the time the file or directory was last
accessed

LastWriteTime Gets or sets the time the file or directory was last written

Length Returns the length of the file in bytes

Name Returns the name of the file

Method Description

AppendText Creates a StreamWriter to append text to a file

CopyTo Copies a file to another location

Create Creates a new file and a FileStream to write to it

CreateText Creates a StreamWriter to write to a new text file

Delete Deletes a file

MoveTo Moves a file to a new location

Open Returns a FileStream with a specified level of access to a
file

OpenRead Returns a FileStream with read access to a file

OpenText Creates a StreamReader to read from an existing file

OpenWrite Returns a FileStream with read/write access to a file

Refresh Takes a snapshot of the file from the file system

Replace Replaces the content of one file with another, deleting the
original and creating a backup of the replaced file

ToString Returns the file path as a string

The following example illustrates the use of the directory and file manipulation classes. You’ll
construct a simple directory-listing application, similar in functionality to the MS-DOS dir command.
Here’s how it will work:

■■ If the path represents a file, the details of the file will be printed.

■■ If the path represents a directory, the contents of the directory will be listed.

■■ In addition to the name, the user can choose to display size, last modification date, and at-
tributes. For directories, only the last modification date applies.

294   Microsoft Visual C++/CLI Step by Step

1.	 Create a new CLR Console Application named CppFiles.

2.	 Because all the file and directory classes are part of System::IO, add a using declaration at the
beginning of the application.

using namespace System::IO;

3.	 When the application is run, the user can supply options in addition to a file or directory path.
Add the following code to main to check that you have the minimum number of options:

if (args->Length < 1)
{
 Console::WriteLine("Usage: CppFiles [options] [path]");
 return 0;
}

If the user has specified options, we need to check what they are. Each option is specified by a
single letter, and multiple options are specified as a string, for example, “sa” to choose the “s”
and “a” options. The options supported by this simple application are “s” (for the file size), “d”
(for the last modified date), and “a” (for the file attributes). You can also use “v” (for verbose)
as a shorthand to indicate that you want them all. It doesn’t matter in what order the options
letters are specified, or even if they are repeated.

4.	 Add the following code to main:

String ^options = nullptr;
String ^path = nullptr;
bool hasOptions = false;

bool size = false;
bool date = false;
bool atts = false;

// If we have two arguments, we have options
if (args->Length == 2)
{
 hasOptions = true;
 options = args[0];
 path = args[1];

 // Parse the option string to set the option flags
 ParseOptions(options, size, date, atts);
}
else
 path = args[0];

5.	 Add the function that is going to process the options, placing it before main:

	 Chapter 16  Working with files    295

void ParseOptions(String ^opts, bool &size, bool &date, bool &atts)
{
 opts = opts->ToLower();

 if (opts->Contains("v"))
 {
 size = date = atts = true;
 }
 else
 {
 if (opts->Contains("s")) size = true;
 if (opts->Contains("d")) date = true;
 if (opts->Contains("a")) atts = true;
 }
}

The three bool variables are passed in by reference rather than by value; thus setting them in
this function will change their value back in the main function.

6.	 Check whether the path represents a file or a directory by adding the following code to the
main function:

bool isAFile = false;
bool isADirectory = false;

FileInfo ^fi = gcnew FileInfo(path);
DirectoryInfo ^di = gcnew DirectoryInfo(path);

if (fi->Exists)
 isAFile = true;
else if (di->Exists)
 isADirectory = true;
else
{
 Console::WriteLine("No such file or directory");
 return -1;
}

This isn’t quite as straightforward as you might think. You have to create both FileInfo and
DirectoryInfo objects and then use their Exists properties to check whether either of them
recognizes the path. If neither of them returns true, the most likely explanation is that the path
doesn’t exist, so you print an error message and exit.

7.	 Now that you know what kind of object you have and what options the user wants, you can
print out the details. The first case is that for a single file, and the code for that is very simple,
as illustrated here:

if (isAFile)
{
 ProcessFile(fi, size, date, atts);
}

296   Microsoft Visual C++/CLI Step by Step

8.	 Again, in the interests of modularity, place the code for processing a file in a separate function
before main:

void ProcessFile(FileInfo ^fi, bool size, bool date, bool atts)
{
 // Echo the filename and length
 Console::Write("{0,30}", fi->Name);

 if (size) Console::Write(" {0,10}", fi->Length);
 if (date) Console::Write(" {0}",
 File::GetLastAccessTime(fi->ToString()));
 if (atts)
 {
 FileAttributes fa = File::GetAttributes(fi->ToString());
 Console::Write(" ");
 if ((fa & FileAttributes::Normal) == FileAttributes::Normal)
 Console::Write("<normal>");
 else
 {
 if ((fa & FileAttributes::Archive) == FileAttributes::Archive)
 Console::Write("a");
 if ((fa & FileAttributes::Hidden) == FileAttributes::Hidden)
 Console::Write("h");
 if ((fa & FileAttributes::System) == FileAttributes::System)
 Console::Write("s");
 if ((fa & FileAttributes::ReadOnly) == FileAttributes::ReadOnly)
 Console::Write("r");
 }
 Console::WriteLine();
 }
}

The function first prints the file name and then displays other details, depending on the op-
tions chosen by the user. The last access time can be obtained by calling one of the static
methods on the File class, passing it the path. The easiest way to get the path is to call ToString
on the FileInfo object.

Observe the use of a field width when printing the name; format specifiers can take an op-
tional field width after the field number. If this value is positive, the value is right-justified in
the field; if it is negative, the value is left-justified. A field width of 30 characters should be
wide enough for most files.

If the user has requested attributes, use the static GetAttributes method on the File class to
obtain the FileAttributes. You can then use the bitwise AND operator (&) to match against
the various values defined in the FileAttributes class. This code only checks for four attributes.
There are many more, and it would be simple to extend the application to check for them.

9.	 If the user has entered a directory, list its contents. We will list subdirectories first, followed
by files; directory names will be printed in uppercase letters, and file names in lowercase, but
you can obviously change this to display them however you want. Add the following code for
listing the subdirectories:

	 Chapter 16  Working with files    297

else if (isADirectory)
{
 // Process the subdirectories
 array<String^> ^dirs = Directory::GetDirectories(di->ToString());

 for (int i=0; i<dirs->Length; i++)
 {
 DirectoryInfo ^inf = gcnew DirectoryInfo(dirs[i]);
 String ^name = inf->Name->ToUpper();
 Console::Write("{0,30}", name);
 Console::Write(" {0,10}", "--"); // no size for dirs

 if (date) Console::WriteLine(" {0}",
 Directory::GetLastAccessTime(inf->ToString()));
 }

 // Now do the files
}

The Directory::GetDirectories function returns an array of strings representing the names of
the subdirectories. Loop over this list, creating a DirectoryInfo object from each entry, and
printing out its details. Because there is no size for a directory, simply print a couple of dashes.

10.	 Process the files by using the same function you defined earlier. Place the following code after
the “Now do the files” comment:

array<String^> ^files = Directory::GetFiles(di->ToString());
for (int i=0; i<files->Length; i++)
{
 FileInfo ^fi = gcnew FileInfo(files[i]);
 ProcessFile(fi, size, date, atts);
}

As you can see, it is simply a case of retrieving a list of file names by using GetFiles, creating a
FileInfo object for each file, and then passing it to the processFile function.

11.	 Build the application, open a console window, and then change to the project’s Debug direc-
tory. You can then run the application with a suitable command line, such as the following:

CppFiles v ..

You should see output similar to the following screen shot, listing the files in the parent
directory:

298   Microsoft Visual C++/CLI Step by Step

Tip  If you want to run the application under the Visual Studio debugger, you will need to
provide the command-line arguments for the application. To do so, bring up the property
pages for the project. In the Configuration Properties section, click the Debugging option,
and then, in the Command Arguments edit control, enter the arguments. You can now run
the application in debug mode.

Binary I/O

Binary I/O in the .NET Framework uses the BinaryReader and BinaryWriter classes, which read and
write .NET primitive types in binary format. As with the TextReader and TextWriter classes, the binary
I/O classes use an underlying Stream object to provide a byte stream. Both BinaryReader and
BinaryWriter have a BaseStream property that gives access to the underlying Stream.

The BinaryWriter class
The following table lists the methods provided by BinaryWriter:

Method Description

Close Closes the writer and the underlying stream

Dispose Releases all unmanaged resources used by the writer and,
optionally, releases managed resources, as well

Flush Causes all buffered data to be written to the underlying
device

Seek Sets the seek position within the underlying stream

Write Writes a value to the stream

Write7BitEncodedInt Writes a 32-bit integer in a compressed format

If you look at the Visual Studio 2012 documentation, you’ll see that the Write function has no
fewer than 18 overloads for you to cope with when writing the various basic types provided by
the .NET Framework. Because not all the types provided by .NET are compliant with the Common
Language Specification (CLS), you need to be careful when using some of the Write methods if you
intend for the data to be read from code written in other .NET languages.

Note  The CLS defines types that all .NET languages must support. The signed byte and
unsigned integer types are not included in the CLS, so they might not be usable from some
.NET languages. The most important of these is Microsoft Visual Basic .NET, which doesn’t
support any of the non–CLS-compliant types.

	 Chapter 16  Working with files    299

The BinaryReader class
The following table describes the functions provided by BinaryReader:

Method Description

Close Closes the writer and the underlying stream

Dispose Releases all unmanaged resources used by the writer and,
optionally, releases managed resources, as well

FillBuffer Fills the internal buffer with a number of bytes read from
the underlying stream

PeekChar Reads the next character but doesn’t advance the seek
pointer

Read Reads one or more bytes or characters from the stream

Read7BitEncodedInt Reads a 32-bit integer that was written in a compressed
format

ReadBoolean Reads a Boolean from the stream

ReadByte, ReadBytes Reads one or more bytes from the stream

ReadChar, ReadChars Reads one or more characters from the stream

ReadDecimal Reads a decimal value from the stream

ReadDouble, ReadSingle Reads a double or single-precision floating-point value
from the stream

ReadInt16, ReadInt32, ReadInt64 Reads an integer type from the stream

ReadSByte Reads a signed byte from the stream; not CLS-compliant

ReadString Reads a string from the stream

ReadUInt16, ReadUInt32, ReadUInt64 Reads an unsigned integer type from the stream; not
CLS-compliant

Unlike BinaryWriter, BinaryReader provides separate functions to read each of the basic types.

The exercise that follows shows you how to use the BinaryReader and BinaryWriter classes to write
binary data to a file and read it back. It uses a class, Customer, which represents a bank customer who
has a name, an account number, and a current balance. The application writes customer details to a
file in binary and reads them back.

1.	 Create a new CLR Console Application project named CppBinRead.

2.	 Add the using declaration for System::IO to the beginning of the code, like this:

using namespace System::IO;

3.	 Add a new class definition before the main function.

// The Customer class
ref class Customer
{
 String ^name;
 long accNo;
 double balance;

300   Microsoft Visual C++/CLI Step by Step

public:
 // Default constructor
 Customer() : name(nullptr), accNo(0), balance(0.0) { }

 Customer(String ^n, long ac, double bal)
 : name(n), accNo(ac), balance(bal) { }

 // Properties to retrieve instance data
 property String ^Name
 {
 String ^get() { return name; }
 }

 property long AccountNumber
 {
 long get() { return accNo; }
 }

 property double Balance
 {
 double get() { return balance; }
 }

 // Write object
 void Write(BinaryWriter ^bw)
 {
 bw->Write(name);
 bw->Write(accNo);
 bw->Write(balance);
 }

 // Read object
 void Read(BinaryReader ^br)
 {
 name = br->ReadString();
 accNo = br->ReadInt32();
 balance = br->ReadDouble();
 }
};

The class has three data members: a String for the name, a long for the account number, and
a double for the balance. There are constructors to create default and fully populated objects,
and there’s a set of read-only properties to allow access to the data members.

The Read and Write functions use BinaryReader and BinaryWriter objects to read and write the
state of the object in binary format.

	 Chapter 16  Working with files    301

4.	 Add the following code to main to check that the user passes in a file name and save the path
as a String:

if (args->Length == 0)
{
 Console::WriteLine("Usage: CppBinRead [path]");
 return 0;
}

String ^path = args[0];

This code is very similar to the argument-handling code that has been used in other exercises
in this chapter. Note that for simplicity I’m not checking the path for validity, but it’s easy—
and advisable—to add such a check in a real application.

5.	 Create some Customer objects.

// Create some customers
Customer ^c1 = gcnew Customer("Fred Smith", 1234567, 100.0);
Customer ^c2 = gcnew Customer("Jane Doe", 2345678, 1000.0);
Customer ^c3 = gcnew Customer("Gill Evans", 3456789, 500.0);

6.	 To write the objects, you need a BinaryWriter and a FileStream to do the output to the file.

FileStream ^fs = nullptr;
try
{
 // Create a FileStream to write to the file
 fs = gcnew FileStream(path, FileMode::Create, FileAccess::ReadWrite);

 // Create a BinaryWriter
 BinaryWriter ^bw = gcnew BinaryWriter(fs);
}
catch(IOException ^iex)
{
 Console::WriteLine(iex->Message);
 return -1;
}
finally
{
 if (fs != nullptr) fs->Close();
}

The FileStream writes to a file, creating it if necessary, and the file will be opened with read/
write access because you’ll be reading from it later in the application. Again, it’s good practice
to put the I/O class creation code in a try block to catch any problems that might occur. The
finally block ensures that the file is closed, no matter what happens, but you obviously do not
want to do this if creating the FileStream failed.

302   Microsoft Visual C++/CLI Step by Step

Note  You might find that Visual Studio complains that the FileMode and FileAccess
enumerations are ambiguous. You can ignore this because the code will compile
perfectly well.

7.	 Writing the object data to the file is simply a case of calling the Write function, passing in a
pointer to the BinaryWriter. Add the following code at the end of the try block:

// Write the objects to the file
c1->Write(bw);
c2->Write(bw);
c3->Write(bw);

8.	 Because the file was opened with read/write access, you can now read from the file. To do so,
create a BinaryReader object and attach it to the same FileStream, as shown here:

// Create a BinaryReader that reads from the same FileStream
BinaryReader ^br = gcnew BinaryReader(fs);

9.	 Before you can read from a file to which you’ve written, you have to move the position of the
seek pointer.

// Move back to the beginning
br->BaseStream->Seek(0, SeekOrigin::Begin);

Notice that this code uses the BaseStream property and its associated seek pointer to get
at the underlying Stream object. If you haven’t encountered seek pointers before, read the
explanation in the following sidebar.

Streams and seek pointers
Every stream in .NET has a seek pointer associated with it, which represents the position in the
stream at which the next read or write operation will take place. This pointer is automatically
repositioned when you use Stream class methods to read or write the stream, but it’s also pos-
sible to move this pointer yourself if you need to (and if you know what you’re doing).

The most likely time you’ll need to move the pointer is when you open a stream for read/
write access. After you’ve written to the stream, the seek pointer is positioned at the end, ready
for the next write. If you want to read from the stream, you’ll have to reposition the pointer.

You reposition the pointer by using the Seek method of the Stream object, giving it an offset
in bytes and a position where the offset should be applied. Offsets can be positive or negative,
the sign reflecting whether the offset should move toward the start (negative) or end (positive)
of the stream. The possible positions are members of the SeekOrigin enumeration, and they
can be SeekOrigin::Current (the current position), SeekOrigin::Begin (the start of the Stream), or
SeekOrigin::End (the end of the Stream).

	 Chapter 16  Working with files    303

10.	 Continue with the project from the previous exercise.

11.	 Create a new empty Customer object and read its details from the file, as follows:

Customer ^c4 = gcnew Customer();
c4->Read(br);
Console::WriteLine("Balance for {0} (a/c {1}) is {2}",
 c4->Name, c4->AccountNumber, c4->Balance);

The new Customer object has all its fields set to default values. The call to Read directs it to
read its data from the current position in the file.

The obvious potential problem is that the Read function will read from wherever the
BinaryReader is currently positioned. If it isn’t at the beginning of a Customer object’s data,
you can expect to get an exception thrown.

Tip  If you want to save the state of objects in a real-world application, you wouldn’t
do it manually like this. The System::Runtime::Serialization namespace contains class-
es that help you save and restore the state of objects in an efficient way.

12.	 Build and run the application, providing a suitable file name.

Quick reference

To Do this

Write text to a file. Create a StreamWriter that outputs to a FileStream
and then use the Write and WriteLine members of
StreamWriter. For example:

FileStream ^fs = gcnew FileStream("foo.txt",
FileMode::Append);
StreamWriter ^sw = gcnew StreamWriter(fs);
sw->WriteLine("Some text");

Flush and close the StreamWriter when you’re finished
with it. For example:

sw->Flush();
sw->Close();

Read text from a file. Create a StreamReader that reads from a FileStream and
then use the ReadLine member of StreamReader. For ex-
ample:

FileStream ^fs = gcnew FileStream("foo.txt",
FileMode::Open);
StreamReader ^sr = gcnew StreamReader(fs);
String ^line = sr->ReadLine();

304   Microsoft Visual C++/CLI Step by Step

To Do this

Write binary values to a file. Create a BinaryWriter that outputs to a FileStream and
then use the overloaded Write members of BinaryWriter.
For example:

FileStream ^fs = gcnew FileStream("bar.dat",
FileMode::Create);
BinaryWriter ^bw = gcnew BinaryWriter(fs);
bw->Write("Some text");
bw->Write(100.00);

Read binary values from a file. Create a BinaryReader that reads from a FileStream and
then use the ReadXxx members of BinaryReader. For
example:

FileStream ^fs = gcnew FileStream("foo.txt",
FileMode::Open);
BinaryReader ^br = gcnew BinaryReader(fs);
String ^line = br->ReadString();
double d = br->ReadDouble();

Find out information about a file. Use the static functions provided by the File class. If
you’re going to perform several operations on the same
file, consider creating a FileInfo object and using that,
instead.

Find out information about a directory. Use the static functions provided by the Directory class. If
you’re going to perform several operations on the same
file, consider creating a DirectoryInfo object and using
that, instead.

		 305

C H A P T E R 1 7

Reading and writing XML

After completing this chapter, you will be able to:

■■ Understand why XML is so important to Microsoft .NET.

■■ Describe the classes that make up the .NET XML namespaces.

■■ Parse XML files by using XmlTextReader.

■■ Validate XML by using XmlValidatingReader.

■■ Write XML by using XmlTextWriter.

■■ Use the XmlDocument class to manipulate XML in memory.

This chapter introduces you to the XML capabilities of the Microsoft .NET Framework. XML plays a
major role in .NET as an enabling technology, and the .NET Framework provides full support for

just about everything you’ll need to do with XML.

Note  This chapter assumes that you already know something about XML. You should be
comfortable with elements, attributes, validation, namespaces, and all the other parapher-
nalia that make up XML.

There isn’t ample space to give you a complete foundation in XML and the XML
technologies, so if you haven’t worked with it before, you might want to consult a book
such as XML Step by Step, Second Edition by Michael Young (Microsoft Press, 2002) before
reading further.

XML and .NET

One of the major features of the .NET Framework is that it makes it possible for you to easily produce
distributed applications that are language-independent and that will be platform-independent when
.NET is ported to other platforms. XML plays a major part in this plan by acting as a simple, portable
glue layer that’s used to pass data around in distributed applications.

306   Microsoft Visual C++/CLI Step by Step

Microsoft has XML-enabled many parts of the .NET Framework, and I’ll list a few of the main ones
to give you a flavor of where and how they are used:

■■ It’s possible for the results of database queries to be returned as XML, which makes them por-
table across platforms and languages. It’s also possible to interact with databases more fully
by using XML.

■■ Calls can be made to web services by using Simple Object Access Protocol (SOAP), an XML-
based protocol for making remote procedure calls.

■■ Finding out what a web service provider can do for you involves using the Web Service
Description Language (WSDL). When you query a service, the description of what services
are available and how to call them comes back as XML.

The .NET XML namespaces
The .NET Framework contains a number of namespaces that support XML functionality. The major
members are summarized in the following table:

Namespace Description

System::Xml The overall namespace for XML support

System::Xml::Linq Support for querying and modifying XML documents
using Language-Integrated Query (LINQ)

System::Xml::Schema Support for the World Wide Web Consortium (W3C) and
the Microsoft XML-Data Reduced (XDR) schemas

System::Xml::Serialization Supports serializing objects to and from XML

System::Xml::XPath Supports XPath parsing and evaluation

System::Xml::Xsl Supports Extensible Stylesheet Language Transformations
(XSLT)

This chapter is mainly concerned with the System::Xml namespace and touches on some of the
capabilities of System::Xml::Schema.

The XML processing classes
There are three main classes in the System::Xml namespace for processing XML. I’ll briefly list their
capabilities and functionality here; we’ll get into more detailed examination in the rest of the chapter.

■■ You use an XmlReader for fast, non-cached, forward-only parsing. XmlReader is an abstract
class, and you typically use its static Create method to create a reader with the characteristics
you want, such as validation. Forward-only parsing means that you parse the document from
start to finish, and you can’t back up to reparse an earlier part of the document.

	 Chapter 17  Reading and writing XML    307

Note  There are other, concrete reader classes in System::Xml, such as XmlTextReader
and XmlValidatingReader, and you might see these being used in older code. It is
now recommended that you use the XmlReader class, instead.

■■ XmlTextWriter provides a fast, forward-only way to write XML to streams or files. The XML
produced conforms to the W3C XML 1.0 specification, complete with namespace support.

■■ XmlDocument implements the W3C Document Object Model (DOM), providing an in-memory
representation of an XML document.

Parsing XML by using XmlReader

Let’s start by looking at how you can parse XML by using the XmlReader class. An XmlReader provides
you with a way to parse XML data that minimizes resource usage by reading forward through the
document, recognizing elements as it reads. Very little data is cached in memory, but the forward-
only style has two main consequences. The first is that it isn’t possible to go back to an earlier point
in the file without reading from the beginning again. The second consequence is slightly more subtle:
Elements are read and presented to you one by one, with no context. So, if you need to keep track of
where an element occurs within the document structure, you’ll need to do it yourself. If either of these
consequences sounds like limitations to you, you might need to use the XmlDocument class, which is
discussed in the section “Using XmlDocument” later in this chapter.

XmlReader uses a pull model, which means that you call a function to get the next node when
you’re ready. This model is in contrast to the widely used Simple API for XML (SAX) API, which uses a
push model, meaning that it fires events at callback functions that you provide. The following tables
list the main properties and methods of the XmlReader class:

Property Description

AttributeCount Returns the number of attributes on the current node

Depth Returns the depth of the current node in the tree

Encoding Returns the character encoding of the document

EOF Returns true if the reader is at the end of the stream

HasAttributes Returns true if the current node has any attributes

HasValue Returns true if the current node can have a value

IsEmptyElement Returns true if the current element has no value

Item Gets the value of an attribute

LocalName Returns the name of the current element without a
namespace prefix

Name Returns the full name of the current element

NamespaceURI Gets the namespace URI for the current node

308   Microsoft Visual C++/CLI Step by Step

Property Description

NodeType Gets the type of the current node

Prefix Returns the current namespace prefix

ReadState Returns the state of the reader (for example, closed, at the
end of the file, or still reading)

SchemaInfo Gets the schema information that has been assigned to
the current node as a result of schema validation

Settings Gets the XmlReaderSettings object used to create this
XmlReader

Value Gets the value for the current node

ValueType Gets the Common Language Runtime (CLR) type of the
current node

XmlLang Gets the current xml:lang scope

Method Description

Close Changes the state of the reader to Closed, and closes the
underlying stream.

Create Creates a new XmlReader instance.

Dispose Releases the resources used by the reader.

GetAttribute Gets the value of an attribute.

IsStartElement Returns true if the current node is a start tag.

LookupNamespace Resolves a namespace prefix.

MoveToAttribute Moves to the attribute with a specified index or name.

MoveToContent Moves to the next content node. This method will
skip over non-content nodes, such as those of type
ProcessingInstruction, DocumentType, Comment,
Whitespace, or SignificantWhitespace.

MoveToContentAsync Moves to the next content node asynchronously.

MoveToElement Moves to the element that contains the current attribute.

MoveToFirstAttribute, MoveToNextAttribute Iterates over the attributes for an element.

Read Reads the next node from the stream.

ReadAsync Reads the next node asynchronously.

ReadAttributeValue Processes attribute values that contain entities.

ReadContentAs, ReadContentAsInt, ReadContentAsString… A set of functions that read text content encoded in vari-
ous forms.

ReadElementContentAs, ReadElementContentAsInt… A set of functions that read element content encoded in
various forms.

ReadContentAsAsync Reads the content of an object asynchronously.

ReadElementString Reads the content of an element or a text node as a
string.

ReadInnerXml, ReadOuterXml Read content, including markup. ReadInnerXml only
includes children, whereas ReadOuterXml includes the
current node. Note that there are async versions of these
methods (ReadInnerXmlAsync, ReadOuterXmlAsync).

	 Chapter 17  Reading and writing XML    309

Method Description

ReadStartElement, ReadEndElement Read start and end elements.

ReadString Reads the content of an element as a string.

ReadToDescendant Reads to a named descendant element.

ReadToFollowing Reads until it finds a named element.

ReadToNextSibling Advanced the reader to the next named sibling element.

Skip Skips children of the current element.

SkipAsync Skips children asynchronously.

The most important functions in the second of these tables are Create, which you use to create a
reader object, and those beginning with Read, which instruct the reader to fetch data from the docu-
ment. If you use Read to get the next node, you can use the NodeType property to find out what you
have. You’ll get one of the members of the XmlNodeType enumeration, whose members are listed in
the following table:

Node type Description

Attribute An attribute, for example, type=hardback

CDATA A CDATA section

Comment An XML comment

Document The document object, representing the root of the XML
tree

DocumentFragment A fragment of XML that isn’t a document in itself

DocumentType A document type declaration

Element, EndElement The start and end of an XML element

Entity, EndEntity The start and end of an entity declaration

EntityReference An entity reference (for example, <)

None Used if the node type is queried when no node has been
read

Notation A notation entry in a Document Type Definition (DTD)

ProcessingInstruction An XML processing instruction

SignificantWhitespace White space in a mixed content model document, or
when xml:space=preserve has been set

Text The text content of an element

Whitespace White space between markup

XmlDeclaration The XML declaration at the top of a document

Creating XmlReaders
Prior to version 2.0, System::Xml contained several concrete reader classes such as XmlTextReader and
XmlValidatingReader. These all did the same task—reading XML—but were configured differently. It is
now recommended that you use the XmlReader class, instead, which can create configured readers of
various types.

310   Microsoft Visual C++/CLI Step by Step

You do this by using an XmlReaderSettings object, which holds a collection of settings that defines
a reader configuration. Here’s an example of how to create a basic reader:

XmlReaderSettings ^settings = gcnew XmlReaderSettings();
settings->ConformanceLevel = ConformanceLevel::Fragment;
settings->IgnoreWhitespace = true;
settings->IgnoreComments = true;
XmlReader ^rdr = XmlReader::Create("data.xml", settings);

The XmlReaderSettings class
The following table lists some of the most commonly used configuration properties along with their
default values:

Property Description Default

CheckCharacters Throw an exception if invalid charac-
ters are read

True

ConformanceLevel Is conformance checked at document
or fragment level?

Document

DtdProcessing Determines whether DTDs will be
processed

Prohibit (presence of a DTD will cause
an exception)

IgnoreComments Determines whether comments will
be ignored

False

IgnoreProcessingInstructions Determines whether processing in-
structions will be ignored

False

IgnoreWhitespace Determines whether ignorable white
space will be ignored

False

LineNumberOffset Sets the point at which the
LineNumber counter begins counting

0

LinePositionOffset Sets the point at which the
LinePosition counter begins counting

0

MaxCharactersInDocument Sets the maximum size of the docu-
ment, with 0 denoting no limit

0

Schemas The set of schemas associated with
this reader

An empty XmlSchemaSet object

ValidationFlags Flags indicating the schema valida-
tion settings

ProcessIdentityConstraints and
AllowXmlAttributes are enabled

ValidationType The type of validation to be used None

XmlResolver Sets the XML resolver to be used for
entities, DTDs, and schemas

A new XmlResolver object

Here’s how you can combine these for some common scenarios:

■■ If the input must be a well-formed XML document, set ConformanceLevel to Document.

■■ If the input is a well-formed part of an XML document, set ConformanceLevel to Fragment.

	 Chapter 17  Reading and writing XML    311

■■ If the input contains entities or other features defined in a DTD, set DtdProcessing to Parse.

■■ If you want to validate the input against a DTD, set ValidationType to DTD and set
DtdProcessing to Parse.

■■ If you want to validate the input against one or more schemas, set ValidationType to Schema
and set Schemas to an XmlSchemaSet object that references the schema set.

The following exercise shows you how to read an XML document by using an XmlReader. Following
is the sample XML document used by this exercise and the other exercises in this chapter. This docu-
ment lists details of three volcanoes and contains many common XML constructs:

<?xml version="1.0" ?>
<!-- Volcano data -->
<geology>
 <volcano name="Erebus">
 <location>Ross Island, Antarctica</location>
 <height value="3794" unit="m"/>
 <type>stratovolcano</type>
 <eruption>constant activity</eruption>
 <magma>basanite to trachyte</magma>
 </volcano>
 <volcano name="Hekla">
 <location>Iceland</location>
 <type>stratovolcano</type>
 <height value="1491" unit="m"/>
 <eruption>1970</eruption>
 <eruption>1980</eruption>
 <eruption>1991</eruption>
 <magma>calcalkaline</magma>
 <comment>The type is actually intermediate between crater row
 and stratovolcano types</comment>
 </volcano>
 <volcano name="Mauna Loa">
 <location>Hawaii</location>
 <type>shield</type>
 <height value="13677" unit="ft"/>
 <eruption>1984</eruption>
 <magma>basaltic</magma>
 </volcano>
</geology>

1.	 Start Microsoft Visual Studio 2012 and create a new CLR Console Application project named
CppXmlReader.

2.	 Add the following line to the top of CppXmlReader.cpp:

using namespace System::Xml;

It’s easier to use the classes if you include a using directive for the System::Xml namespace.

312   Microsoft Visual C++/CLI Step by Step

3.	 Add this code to the beginning of the main function to check the number of arguments and
save the path:

// Check for required arguments
if (args->Length == 0)
{
 Console::WriteLine("Usage: CppXmlReader [path]");
 return -1;
}

String ^path = gcnew String(args[0]);

4.	 Now that you have the path, create an XmlReader to parse the file. We start with a simple
parser, which requires a full XML document rather than a fragment but doesn’t do any
validation.

try
{
 // Create the settings object
 XmlReaderSettings ^settings = gcnew XmlReaderSettings();
 settings->ConformanceLevel = ConformanceLevel::Document;

 // Create the reader...
 XmlReader ^rdr = XmlReader::Create(path, settings);
}
catch (Exception ^ex)
{
 Console::WriteLine(ex->Message);
}

The settings object is set to require a full document and to ignore any comment lines. Because
the XmlReader constructor takes the name of the document you want to parse, it’s a good
idea to catch exceptions here because several things can go wrong at this stage, including
passing the constructor a bad path name. You can build and run the application from the
command line at this stage if you want to check that the file opens correctly, or you can use
the Debugging page of the project’s properties to enter the file name and run it from within
Visual Studio.

Keep in mind that XmlReader isn’t limited to reading from files. You can overload Create to
take XML input from URLs, streams, strings, and other XmlReader objects.

5.	 Parsing the file simply means making repeated calls to the Read function until the parser runs
out of XML to read. The simplest way to do this is to put a call to Read inside a while loop. Add
this code to the end of the code inside the try block:

// Read nodes
while (rdr->Read())
{
 // do something with the data
}

	 Chapter 17  Reading and writing XML    313

The Read function returns true or false depending on whether there are any more nodes to
read.

6.	 Each call to Read positions the XmlReader on a new node, and you can then query the
NodeType property to determine the type of node with which you are dealing. Add the
following code, which identifies several of the most common node types:

// Read nodes
while (rdr->Read())
{
 switch (rdr->NodeType)
 {
 case XmlNodeType::XmlDeclaration:
 Console::WriteLine("-> XML declaration");
 break;
 case XmlNodeType::Document:
 Console::WriteLine("-> Document node");
 break;
 case XmlNodeType::Element:
 Console::WriteLine("-> Element node, name={0}", rdr->Name);
 break;
 case XmlNodeType::EndElement:
 Console::WriteLine("-> End element node, name={0}",
 rdr->Name);
 break;
 case XmlNodeType::Text:
 Console::WriteLine("-> Text node, value={0}", rdr->Value);
 break;
 case XmlNodeType::Comment:
 Console::WriteLine("-> Comment node, name={0}, value={1}",
 rdr->Name, rdr->Value);
 break;
 case XmlNodeType::Whitespace:
 break;
 default:
 Console::WriteLine("** Unknown node type");
 break;
 }
}

Every time a new node is read, the switch statement checks its type against members of the
XmlNodeType enumeration. I haven’t included the cases for every possible node type, just
those that occur in the sample document.

Observe that the Name and Value properties are used for some node types. Whether a node
has a Name and a Value depends on the node type. For example, elements have names and
can have values, and comments have a value (the comment text) but not names. Processing
instructions normally have both names and values.

Also notice that nodes of type XmlNodeType::Whitespace are simply discarded. The volcanoes.
xml file contains plenty of white space to make it readable to humans, but the CppXmlReader
application isn’t really interested in white space, so the application prints nothing when it
encounters a white space node.

314   Microsoft Visual C++/CLI Step by Step

7.	 Build the application and run it from the command line, giving the name of an XML file:

CppXmlTextReader volcanoes.xml

The first few lines of the output should look like this:

-> XML declaration
-> Comment node, name=, value= Volcano data
-> Element node, name=geology
-> Element node, name=volcano
-> Element node, name=location
-> Text node, value=Ross Island, Antarctica
-> End element node, name=location
-> Element node, name=height
-> Element node, name=type
-> Text node, value=stratovolcano
-> End element node, name=type
-> Element node, name=eruption
-> Text node, value=constant activity

The first node is the XML declaration at the beginning of the document, which is followed by
a comment whose value is the comment text. Each XML element in the document produces a
matching pair of Element and EndElement nodes, with the content of a node represented by
a nested Text node.

You can see that the nodes are presented to you in linear sequence, so if you want to keep
track of the hierarchical structure of the document, you’re going to have to put code in place
to do that.

Verifying well-formed XML
XML that is correctly constructed is called well-formed XML, which means that elements are correctly
nested and that every element tag has a matching end-element tag. If the XmlReader encounters
badly formed XML, it will throw an XmlException to alert you as to what it thinks is wrong. As with all
parsing errors, the place where it’s reported might be some distance from the actual location of the
error.

Handling attributes
XML elements can include attributes, which consist of name/value pairs and are always string data. In
the sample XML file, the volcano element has a name attribute, and the height element has value and
unit attributes. To process the attributes on an element, add code to the Element case in the switch
statement so that it looks like this:

	 Chapter 17  Reading and writing XML    315

case XmlNodeType::Element:
 Console::WriteLine("-> Element node, name={0}", rdr->Name);
 if (rdr->AttributeCount > 0)
 {
 Console::Write(" ");
 while (rdr->MoveToNextAttribute())
 Console::Write(" {0}={1}", rdr->Name, rdr->Value);
 Console::WriteLine();
 }
 break;

The AttributeCount property indicates how many attributes an element has, and the MoveToNext
Attribute method makes it possible for you to iterate over the collection of elements, each of which
has a name and a value. Alternatively, you can use the MoveToAttribute function to position the
reader on a particular attribute by specifying either a name or a zero-based index.

Attributes are read along with the element node of which they’re a part. When reading attributes,
you can use the MoveToElement method to position the reader back to the parent element. When you
run the code, you should see output similar to this for nodes that have attributes:

-> Element node, name=height
 value=13677 unit=ft

Parsing XML with validation
There are a number of ways to validate the correctness of XML documents, and XmlReader supports
the two most common standards: DTDs and W3C schemas.

The following exercise modifies the application to validate the XML as it’s parsed. To perform vali-
dation, you need to have a DTD or a schema against which to validate. Here’s a DTD for the volcano
XML data (this is in a file named geology.dtd):

<!ELEMENT geology (volcano)+>
<!ELEMENT volcano (location,height,type,eruption+,magma,comment?)>
<!ATTLIST volcano name CDATA #IMPLIED>
<!ELEMENT location (#PCDATA)>
<!ELEMENT height EMPTY>
<!ATTLIST height value CDATA #IMPLIED
 unit CDATA #IMPLIED>
<!ELEMENT type (#PCDATA)>
<!ELEMENT eruption (#PCDATA)>
<!ELEMENT magma (#PCDATA)>
<!ELEMENT comment (#PCDATA)>

Note  I’ve used a DTD for simplicity, but a schema can be used in exactly the same way.

316   Microsoft Visual C++/CLI Step by Step

Edit the volcanoes.xml file to add a DOCTYPE reference at the top of the file.

<?xml version="1.0" ?>
<!DOCTYPE geology SYSTEM "geology.dtd">
<!-- Volcano data -->

If you check the sample XML document against the DTD, you’ll notice that there’s a problem. The
element ordering for the second volcano, Hekla, is location-type-height rather than the location-
height-type order demanded by the DTD. So, when you parse this XML with validation, you’d expect a
validation error from the parser.

1.	 Continue with the project from the previous exercise.

2.	 Add a using declaration to the top of the CppXmlReader.cpp, as shown here:

using namespace System::Xml::Schema;

Some of the classes and enumerations are part of the System::Xml::Schema namespace, and
the inclusion of the using declaration makes it easier to refer to them in code.

3.	 Add another property to the XmlReaderSettings to cause the reader to parse the DTD. If you
do not set this, parsing will fail because the default setting prohibits DTD parsing.

settings->DtdProcessing = DtdProcessing::Parse;

4.	 If you already have a reader, you can add validation by chaining two readers together, as
demonstrated in the following:

// Create settings for DTD validation
XmlReaderSettings ^validationSettings = gcnew XmlReaderSettings();
validationSettings->ValidationType = ValidationType::DTD;
validationSettings->DtdProcessing = DtdProcessing::Parse;

// Create a validating reader and wrap the existing one
XmlReader ^validatingReader = XmlReader::Create(rdr, validationSettings);

The constructor for the second reader takes a reference to the initial reader, which it uses to
perform the basic parsing tasks. Notice how you must enable DTD parsing in the second set-
tings object as well as the first.

5.	 Edit all the code that parses the XML to use the new reader, validatingReader, rather than the
original reader, rdr.

6.	 If you now build and run the application, it should throw an exception when it finds the invalid
element ordering in the document.

The element 'volcano' has invalid child element 'type'. List of possible elements
expected: 'height'.

	 Chapter 17  Reading and writing XML    317

You can improve on this error handling by installing an event handler. The parser fires a
ValidationEvent whenever it finds something to report to you, and if you install a handler for
this event, you’ll be able to handle the validation errors yourself and take appropriate action.

7.	 Event handler functions must be members of a managed class, so create a new class to host a
static handler function. Add this code before the main function:

// Validation handler class
ref class ValHandler
{
public:
 static void ValidationHandler(Object ^sender, ValidationEventArgs ^args)
 {
 Console::WriteLine("Validation Event: {0}", args->Message);
 }
};

The ValHandler class contains one static member, which is the handler for a ValidationEvent.
As usual, the handler has two arguments: a pointer to the object that fired the event, and an
argument object. In this case, the handler is passed a ValidationEventArgs object that contains
details about the parser validation error. This sample code isn’t doing anything except print-
ing the error message, but in practice, you’d decide what action to take based on the Severity
property of the ValidationEventArgs object.

8.	 Link up the handler to the settings object in the usual way.

// Set the handler
validationSettings->ValidationEventHandler +=
 gcnew ValidationEventHandler(&ValHandler::ValidationHandler);

Ensure that you set up the handler before the call to XmlReader::Create; otherwise, the reader
will not know about the validation.

9.	 Build and run the application. This time, you won’t get the exception message, but you will see
the messages printed out from the event handler as it finds validation problems.

10.	 Correct the ordering of the elements in the XML file and then run the application again. You
shouldn’t see any validation messages this time through.

318   Microsoft Visual C++/CLI Step by Step

Writing XML by using XmlTextWriter

If you’ve read about XML, you’re probably aware that the W3C XML 1 specification describes the
serialized form of XML—the way that XML appears when rendered as text—complete with angle
brackets, start tags and end tags, and namespace and XML declarations. If you have some data that
you want to write as XML, it isn’t hard to do it manually, but the .NET Framework provides you with
the XmlTextWriter class to help with a lot of the formatting chores such as keeping track of indenta-
tion and inserting namespace information everywhere it’s needed. The tables that follow list the
properties and methods of the XmlTextWriter class, respectively:

Property Description

BaseStream Gets the underlying stream object

Formatting Determines whether the XML is output with indentation.
The default is Formatting::None.

Indentation Determines the indentation level. The default is 2.

IndentChar Represents the indentation character. The default is a
space.

Namespaces Determines whether to support namespaces. The default
is true.

QuoteChar Represents the character used to quote attribute values.
The value must be a single or double quotation mark. The
default is double.

Settings Gets the XmlWriterSettings object used when creaing this
XmlWriter instance

WriteState Gets the state of the writer (discussed in the following
text).

XmlLang Gets a string that represents the value of the xml:lang
attribute. The value will be null if there’s no xml:lang
attribute in the current scope.

XmlSpace Represents the value of the xml:space attribute.

The state of the writer indicates what the writer is doing at the point where you query the prop-
erty. It will report one of the values from the WriteState enumeration, such as Start (no write methods
have been called yet), Closed, Attribute (it is writing an attribute), or Content (it is writing element
content).

Method Description

Close Closes the writer and the underlying stream

Flush Flushes whatever is in the buffer

LookupPrefix Returns the current namespace prefix, if any

WriteAttributes Writes out a set of attributes

WriteAttributeString Writes an attribute with a specified value

WriteBase64, WriteBinHex Encodes binary bytes as Base64 or BinHex, and writes the
text

	 Chapter 17  Reading and writing XML    319

Method Description

WriteCData Writes text as a CDATA section

WriteCharEntity Writes a Unicode character as a hexadecimal character
entity

WriteChars Writes text one buffer at a time

WriteComment Writes text as an XML comment

WriteDocType Writes a DOCTYPE declaration

WriteElementString Writes an element

WriteEntityRef Writes an entity reference

WriteFullEndElement Writes a full end-element tag

WriteName Writes a name, making sure it’s a valid XML name

WriteNode Writes an entire node, with all its content

WriteProcessingInstruction Writes an XML processing instruction

WriteQualifiedName Writes an XML qualified name

WriteRaw Writes raw markup manually

WriteStartAttribute, WriteEndAttribute Writes the start and end of an attribute

WriteStartDocument, WriteEndDocument Writes the start and end of a document

WriteStartElement, WriteEndElement Writes the start and end of an element

WriteString Writes text

WriteValue Writes a value

WriteWhitespace Writes white space

Note  There are asynchronous versions of many of these methods, such as FlushAsync,
WriteAttributesAsync, and WriteCommentAsync.

As you can see from the preceding table, to write elements, attributes, and documents, you need
to call a start and an end function. When using XmlTextWriter, you don’t simply write an element; you
write the start tag, write its content, and then write the end tag. Therefore, you have to keep track of
where you are in the document to ensure that you call the correct end functions at the correct time.

This exercise shows you how to write a simple XML document by using XmlTextWriter. It uses most
of the major member functions of the class.

1.	 Start a new CLR Console Application project named CppXmlWriter.

2.	 Add the following line to the top of CppXmlWriter.cpp, which will help you access the
namespace members:

using namespace System::Xml;

320   Microsoft Visual C++/CLI Step by Step

3.	 Add this code to the start of the main function to check the number of arguments and save
the path:

// Check for required arguments
if (args->Length == 0)
{
 Console::WriteLine("Usage: CppXmlWriter [path]");
 return -1;
}

String ^path = gcnew String(args[0]);

4.	 Create an XmlTextWriter by adding the following code (which is very similar to the code used
to create the XmlReader in the previous exercise):

try
{
 // Create the writer...
 // Use the default encoding
 XmlTextWriter ^writer = gcnew XmlTextWriter(path, nullptr);
}
catch (Exception ^ex)
{
 Console::WriteLine(ex->Message);
}

The writer is created by specifying the path for the new file and the character encoding that
should be used. Passing a null pointer means that the writer will use the default UTF-8 encod-
ing; this is a good default choice.

Note  If you want to use another encoding, such as UTF-7 or ASCII, you can specify a
System::Text::Encoding object of the appropriate type.

5.	 Let’s write the XML declaration to the file. Add the following lines to the end of the code
inside the try block:

// Set the formatting
writer->Formatting = Formatting::Indented;

// Write the standard document start
writer->WriteStartDocument();

// Flush and close
writer->Flush();
writer->Close();

XmlTextWriter can produce output that employs indents or that has no formatting. The default
is no formatting, so you need to set the Formatting property if you want indentation. The
defaults for the indentation character (a space) and the indentation level (two characters) are
usually quite acceptable.

	 Chapter 17  Reading and writing XML    321

WriteStartDocument produces a standard XML declaration. To ensure that all the text is output
to the file, you should call Flush and Close before exiting.

6.	 Write the root element to the document, as shown here:

// Write the standard document start
writer->WriteStartDocument();

// Start the root element
writer->WriteStartElement("geology");

// Close the root element
writer->WriteEndElement();

7.	 The content of the root element will go between the calls to WriteStartElement and
WriteEndElement. There isn’t any content in this case, but you still need both calls. Build
and run the application at this stage, giving the name of the XML file.

CppXmlWriter test1.xml

You’ll see that the application writes an empty root element.

<?xml version="1.0"?>
<geology />

8.	 To see how some of the other methods of XmlTextWriter are used, add one of the volcano
entries to the root element, as illustrated in the following:

// Start the root element
writer->WriteStartElement("geology");

// Start the volcano element
writer->WriteStartElement("volcano");

// Do the name attribute
writer->WriteAttributeString("name", "Mount St.Helens");

// Write the location element
writer->WriteStartElement("location");
writer->WriteString("Washington State, USA");
writer->WriteEndElement();

// Write the height element
writer->WriteStartElement("height");
writer->WriteAttributeString("value", "9677");
writer->WriteAttributeString("unit", "ft");
writer->WriteEndElement();

// Write the type element
writer->WriteStartElement("type");
writer->WriteString("stratovolcano");
writer->WriteEndElement();

322   Microsoft Visual C++/CLI Step by Step

// Write the eruption elements
writer->WriteStartElement("eruption");
writer->WriteString("1857");
writer->WriteEndElement();

writer->WriteStartElement("eruption");
writer->WriteString("1980");
writer->WriteEndElement();

// Write the magma element
writer->WriteStartElement("magma");
writer->WriteString("basalt, andesite and dacite");
writer->WriteEndElement();

// Close the volcano element
writer->WriteEndElement();
// Close the root element
writer->WriteEndElement();

I’ve left in the root element code so that you can see how everything nests. Adding extra ele-
ments isn’t hard, but it’s rather long-winded, and you have to be careful to nest all the calls
correctly.

9.	 Build and run the application, providing it with a suitable file name. The file should contain
XML that looks very much like this:

<?xml version="1.0"?>
<geology>
 <volcano name="Mount St.Helens">
 <location>Washington State, USA</location>
 <height value="9677" unit="ft" />
 <type>stratovolcano</type>
 <eruption>1857</eruption>
 <eruption>1980</eruption>
 <magma>basalt, andesite and dacite</magma>
 </volcano>
</geology>

You can see how all the elements contain their attributes, how they are nested correctly, and
how everything is properly indented.

Using XmlDocument

Our handling of XML so far has been forward-only, which is very light on resource usage but isn’t so
useful if you need to move around within the XML document. The XmlDocument class is based on the
W3C DOM, and it’s the class that you want to use if you need to browse, modify, or create an XML
document.

	 Chapter 17  Reading and writing XML    323

What is the W3C DOM?
The DOM is a specification for an API by which programmers can manipulate XML held in memory.
The DOM specification is language-independent, and bindings are available for many programming
languages, including C++. XmlDocument is based on the DOM, with Microsoft extensions.

Because XmlDocument works with XML in memory, it has several advantages and disadvantages
when compared with the XmlReader forward-only approach.

By reading the entire document and building a tree in memory, you gain the advantage of having
access to all the elements and can wander through the document at will. You can also edit the docu-
ment by changing, adding, or deleting nodes, and you can write the changed document back to hard
disk again. It’s even possible to create an entire XML document from scratch in memory and write it
out—serialize it—which is a useful alternative to using XmlTextWriter.

The main disadvantage is that all of an XML document is held in memory at one time, so the
amount of memory needed by your application is going to be proportional to the size of the XML
document with which you’re working. Therefore, if you’re working with a very large XML document—
or have limited memory—you might not be able to use XmlDocument.

The XmlDocument class
The XmlDocument class has a number of properties, methods, and events, the most important of
which are summarized in the following three tables:

Property Description

Attributes Gets an XmlAttributeCollection representing the attributes
of a node.

ChildNodes Gets all the child nodes of a node.

DocumentElement Returns the root element for the document.

DocumentType Returns the DOCTYPE node, if one is present.

FirstChild, LastChild Gets the first or last child nodes of a node.

HasChildNodes Value is true if a node has child nodes.

InnerText Returns the concatenated values of a node and all its
child nodes.

InnerXml Gets or sets the markup representing the children of the
current node.

IsReadOnly Gets a value indicating whether the current node is read-
only.

Item Gets the first child with the specified name.

LocalName Gets the name of the current node without a namespace
prefix.

Name Gets the fully qualified name of the current node.

NamespaceURI Gets the namespace URI associated with the current node.

NextSibling, PreviousSibling Gets the node immediately following or preceding this
node.

324   Microsoft Visual C++/CLI Step by Step

Property Description

NodeType Gets the type of the current node. The node type will
be one of the XmlNodeType values listed in the table on
page XXX.

OuterXml Gets the markup representing the current node and its
children

OwnerDocument Gets the XmlDocument to which the current node
belongs.

ParentNode Gets the parent of a node.

Prefix Gets or sets the namespace prefix associated with this
node.

PreserveWhitespace Determines whether white space should be regarded as
significant. The default is false.

Schemas Gets the collection of schemas associated with this
document.

Value Gets or sets the value of a node.

Method Description

AppendChild Appends a child node to a node

Clone, CloneNode Creates a duplicate of the current node

CreateAttribute Creates an XmlAttribute object

CreateCDataSection Creates an XmlCDataSection object

CreateComment Creates an XmlComment object

CreateDefaultAttribute Creates a default XmlAttribute object

CreateDocumentType Creates an XmlDocumentType object

CreateElement Creates an XmlElement object

CreateEntityReference Creates an XmlEntityReference object

CreateNavigator Creates an XPathNavigator for navigating the object and
its contents

CreateNode Creates a plain XmlNode

CreateProcessingInstruction Creates an XmlProcessingInstruction object

CreateTextNode Creates an XmlText object

CreateWhitespace Create an XmlWhitespace object

CreateXmlDeclaration Creates an XmlDeclaration object

GetElementById Returns an XML element with the specified ID attribute

GetElementsByTagName Gets a list of descendant nodes matching a name

GetEnumerator Get an enumerator for the children of the current node

ImportNode Imports a node from another document

InsertBefore, InsertAfter Inserts a node before or after a reference node

	 Chapter 17  Reading and writing XML    325

Method Description

Load Loads XML from a file, a URL, a stream, or an XmlReader
object

LoadXml Loads XML from a string

ReadNode Creates an XmlNode based on the current position of an
XmlReader

RemoveAll Removes all child nodes and attributes from a node

RemoveChild, ReplaceChild Removes or replaces a child node

Save Saves the XML document to a file, a stream, or an
XmlWriter

SelectNodes, SelectSingleNode Select one or more nodes matching an XPath expression

Validate Validates the document against a collection of schemas

WriteContentTo Saves all the children of the XmlDocument node to an
XmlWriter

WriteTo Saves the XmlDocument to an XmlWriter

Event Description

NodeChanged Fired when the value of a node has been changed

NodeChanging Fired when the value of a node is about to be changed

NodeInserted Fired when a node has been inserted

NodeInserting Fired when a node is about to be inserted

NodeRemoved Fired when a node has been removed

NodeRemoving Fired when a node is about to be removed

The XmlNode class
You’ll notice a lot of references to nodes in the preceding tables. The DOM tree that an XmlDocument
object builds in memory is composed of nodes, each of which is an object of a class that inherits
from the abstract XmlNode base class. Just about everything in an XML document is represented by a
node. For example:

■■ Elements are represented by the XmlElement class.

■■ Attributes are represented by the XmlAttribute class.

■■ The text content of elements is represented by the XmlText class.

■■ Comments are represented by the XmlComment class.

326   Microsoft Visual C++/CLI Step by Step

The XmlNode class provides common functionality for all these node types. Because this func-
tionality is so important when working with XmlDocument, I’ve listed the properties and methods of
XmlNode in the following two tables:

Property Description

Attributes Gets the collection of attributes for the node.

ChildNodes Gets all the children of the node as an XmlNodeList.

FirstChild, LastChild Gets a pointer to the first and last children of the node.

HasChildNodes Value is true if a node has child nodes.

InnerText Represents the concatenated values of the node and all
its children.

InnerXml, OuterXml InnerXml gets or sets the markup representing the chil-
dren of the node. OuterXml includes the node and its
children.

IsReadOnly Returns the read-only status of the node.

Item Gets a child element by name.

Name, LocalName The name of the node, with or without namespace
information.

NextSibling, PreviousSibling Gets a pointer to the node immediately following or pre-
ceding a node.

NodeType Returns an XmlNodeType value representing the type of
the node.

OwnerDocument Gets a pointer to the XmlDocument that owns this node.

ParentNode Gets the node’s parent node.

Prefix Gets or sets the namespace prefix for the node.

Value Gets or sets the value of the node. What the value repre-
sents depends on the node type.

Method Description

AppendChild, PrependChild Adds a child to the end or beginning of a node’s list of
child nodes

Clone, CloneNode Clones a node

CreateNavigator Creates an XPathNavigator for navigating the object and
its contents

GetEnumerator Returns an enumerator for the collection of child nodes

GetNamespaceOfPrefix Returns the namespace URI for the namespace prefix of
this node

GetPrefixOfNamespace Gets the prefix associated with the namespace of this
node

InsertAfter, InsertBefore Inserts a node after or before a specified node

Normalize Normalizes the tree so that there are no adjacent XmlText
nodes

RemoveAll Removes all children and attributes of a node

RemoveChild Removes a specified child node

	 Chapter 17  Reading and writing XML    327

Method Description

ReplaceChild Replaces a specified child node

SelectNodes Selects a list of nodes matching an XPath expression

SelectSingleNode Selects the first node that matches an XPath expression

Supports Tests whether the underlying DOM implementation sup-
ports a particular feature

WriteContentTo Saves all children of the current node

WriteTo Saves the current node

Perhaps the most important descendant of XmlNode is XmlElement, which represents an element
within a document. This class adds a number of methods to XmlNode, most of which are concerned
with getting, setting, and removing attributes.

The following exercise shows you how to use XmlDocument. You’ll write an application that reads
the volcano XML file into memory and then inserts a new element into the structure.

1.	 Start a new CLR Console Application project named CppDom.

2.	 Add the following line to the top of CppDom.cpp:

using namespace System::Xml;

3.	 Add this code to the start of the main function to check the number of arguments and save
the path:

// Check for required arguments
if (args->Length == 0)
{
 Console::WriteLine("Usage: CppXmlWriter path");
 return -1;
}

String ^path = gcnew String(args[0]);

4.	 Create a new managed class named XmlBuilder and give it an XmlDocument^ as a data
member:

ref class XmlBuilder
{
 XmlDocument ^doc;
};

You need a managed class because it will be necessary to pass the XmlDocument handle
around between functions. You could pass the pointer explicitly in the argument list of each
function, but it’s better to make it a member of a class so that it can be accessed by all the
member functions.

328   Microsoft Visual C++/CLI Step by Step

5.	 Add a constructor that creates an XmlDocument object, and instruct it to load the file that was
specified on the command line.

public:
 XmlBuilder(String ^path)
 {
 // Create the XmlDocument
 doc = gcnew XmlDocument();

 // Load the data
 doc->Load(path);
 Console::WriteLine("Document loaded");
 }

Unlike XmlReader, the XmlDocument class reads and parses the file when it’s constructed.
Note that you’re not catching exceptions here. Something might go wrong when opening or
parsing the file, but exceptions are left for the caller to handle.

6.	 Add some code to the main function to create an XmlBuilder object. Ensure that you are pre-
pared to handle any exceptions that occur.

// Create a Builder and get it to read the file
try
{
 XmlBuilder ^builder = gcnew XmlBuilder(path);
}
catch(Exception ^ex)
{
 Console::WriteLine(ex->Message);
}

7.	 Try building and running the application at this point. First copy the volcanoes.xml and
geology.dtd files you created earlier from the debug folder into the project folder. If you see
the “Document loaded” message displayed when you run the application, you know that the
document has been loaded and parsed.

The next step is to access the nodes in the tree. The current XML document contains three
volcano elements; what you’ll do is find the second element and insert a new element after
it. There are a number of ways in which you could do this, but for now, I’ll just illustrate one
method. It isn’t the most efficient way to do the job, but it does show how to use several
XmlDocument and XmlNode methods and properties.

8.	 Continue working on the CppDom project. Start working with the tree by getting a handle to
its root. Because you’ll use this root several times, add an XmlNode^ member to the XmlBuilder
class, like this:

private:
 XmlNode ^root;

	 Chapter 17  Reading and writing XML    329

9.	 Add the following code to the constructor to get the root node:

// Get the root of the tree
root = doc->DocumentElement;

DocumentElement returns you the top of the DOM tree. Note that this is not the root element
of the XML document, which is one level down.

10.	 You also need to get the list of child nodes for the root. Because you’ll be using this list again,
add an XmlNodeList^ member to the class to hold the list.

private:
 XmlNodeList ^nodelist;

11.	 The code that follows shows how you can get a list of child nodes and iterate over it. Add this
to the constructor:

// get the child node list
nodelist = doc->ChildNodes;
IEnumerator ^ie = nodelist->GetEnumerator();

while (ie->MoveNext() == true)
 Console::WriteLine("Child: {0}",
 (dynamic_cast<XmlNode^>(ie->Current))->Name);

The ChildNodes property returns a list of child nodes as an XmlNodeList. The XmlNodeList is a
typical .NET collection class, which means that you can get an enumerator to iterate over the
nodes. The code iterates over the child nodes, printing the name of each. Note that because
Current returns an Object handle, it has to be cast to an XmlNode^ before you can use the
Name property.

12.	 The IEnumerator interface is part of the System::Collections namespace, so you need to add
the following code near the top of the CppDom.cpp file, after the other using directives:

using namespace System::Collections;

13.	 If you run this code on the volcanoes.xml file, you should see output similar to the following:

Document loaded
Child: xml
Child: geology
Child: #comment
Child: geology

The root of the tree has four child nodes: the XML declaration, the DOCTYPE declaration, a
comment, and the root node.

Note  After you’ve verified the existence of the child nodes, you can remove the
lines that declare and use the enumerator because you won’t need them again. Be
certain that you don’t remove the line that assigns the value to nodelist!

330   Microsoft Visual C++/CLI Step by Step

14.	 Now that you have the root of the tree, you need to find the root element of the XML by us-
ing a public class member function named ProcessChildNodes, as shown here:

void ProcessChildNodes()
{
 // Declare an enumerator
 IEnumerator ^ie = nodelist->GetEnumerator();

 while (ie->MoveNext() == true)
 {
 // Get a handle to the node
 XmlNode ^node = dynamic_cast<XmlNode^>(ie->Current);

 // See if it is the root
 if (node->NodeType == XmlNodeType::Element &&
 node->Name->Equals("geology"))
 {
 Console::WriteLine(" Found the root");
 ProcessRoot(node);
 }
 }
}

The function creates an enumerator and iterates over the children of the root node. The root
XML element will be of type XmlNodeType::Element and will have the name geology.

15.	 After you’ve identified that element, the public function ProcessRoot is then used to process
the children of the root XML element.

void ProcessRoot(XmlNode ^rootNode)
{
 XmlNode ^node =
 dynamic_cast<XmlNode^>(rootNode->ChildNodes->Item(1));

 // Create a new volcano element
 XmlElement ^newVolcano = CreateNewVolcano();

 // Link it in
 root->InsertBefore(newVolcano, node);
}

The function is passed in the root node. I know that the file I’m working with has more than
two volcano elements, and I know that I want to insert a new one before the second ele-
ment. So, I can get a direct reference to the second element by using the Item property on
ChildNodes to access a child node by index. In real code, you’d obviously need to put in a lot
more checking to ensure that you were retrieving the desired node.

After the node has been retrieved, you call CreateNewVolcano to create a new volcano ele-
ment. Then, you use InsertBefore to insert the new one immediately before the node you just
retrieved by index.

	 Chapter 17  Reading and writing XML    331

16.	 Add the public CreateNewVolcano function, which creates a new volcano element. To save
space, I have omitted some the code for creating the entire element; however, I’ve included
enough so that you can see how it works.

XmlElement^ CreateNewVolcano()
{
 // Create a new element
 XmlElement ^newElement = doc->CreateElement("volcano");

 // Set the name attribute
 XmlAttribute ^att = doc->CreateAttribute("name");
 att->Value = "Mount St.Helens";
 newElement->Attributes->Append(att);

 // Create the location element
 XmlElement ^locElement = doc->CreateElement("location");
 XmlText ^xtext = doc->CreateTextNode("Washington State, USA");
 locElement->AppendChild(xtext);

 newElement->AppendChild(locElement);

 return newElement;
}

The function creates a new XmlElement for the volcano. Notice that the node classes—
XmlElement, XmlComment, and so on—don’t have public constructors, so you need to create
them by calling the appropriate factory method. The name attribute is appended to the
element’s collection of attributes, and then the location element is created with its content.
Building DOM trees like this is a process of creating new nodes and appending them to one
another.

17.	 It would be useful to be able to print out the modified tree, so add a public function named
PrintTree to the class, as shown here:

void PrintTree()
{
 XmlTextWriter ^xtw = gcnew XmlTextWriter(Console::Out);
 xtw->Formatting = Formatting::Indented;

 doc->WriteTo(xtw);
 xtw->Flush();
 Console::WriteLine();
}

You’ve already seen the use of XmlTextWriter to create XML manually. You can also use it to
output XML from a DOM tree by linking it up to an XmlDocument, as shown in the preceding
code.

332   Microsoft Visual C++/CLI Step by Step

18.	 Add calls to ProcessChildNodes and PrintTree to the main function, and then build and test the
application.

try
{
 XmlBuilder ^builder = new XmlBuilder(path);
 builder->ProcessChildNodes();

 builder->PrintTree();}
catch(Exception ^ex)
{
 Console::WriteLine(ex->Message);
}

When you run the application, you can see that the new node has been added to the tree.
Remember that this operation has modified only the DOM tree in memory; the original XML
file has not been changed.

Quick reference

To Do this

Parse XML without validation. Create an XmlReader, and pass it the name of a file. Then,
use the Read method to read nodes from the file.

Parse XML with DTD validation. Create an XmlReaderSettings object, and set its
ValidationType property to ValidationType::DTD.
You must also set the DtdProcessing property to
DtdProcessing::Parse.
Then, use the settings to initialize an XmlReader. Create a
handler function for validation events and attach it to the
ValidationEventHandler event of the XmlReader.

Work with XML in memory. Create an XmlDocument and use its Load or LoadXml
function to parse XML into a DOM tree in memory.

		 333

C H A P T E R 1 8

Using ADO.NET

After completing this chapter, you will be able to:

■■ Connect to a database.

■■ Execute SQL statements to query the database.

■■ Execute SQL statements to update the database.

■■ Create disconnected applications, which use a DataSet to cache tables in memory.

■■ Create a report displaying data from the database.

ADO.NET is the data access API from Microsoft for the .NET Framework. ADO.NET has been opti-
mized to work with .NET, making it possible for distributed applications and services to exchange

data easily and reliably.

ADO.NET offers two distinct programming models, depending on the type of application you
need to build:

■■ If you require forward-only, read-only access to the data, you can use a DataReader to iterate
over the results of a query. As you’ll see, DataReaders are easy to use but require that you
remain connected to the database as long as you are using the reader.

■■ Alternatively, you can use a DataSet to represent an in-memory cache of data from the data
source. You can create a DataSet, load data into it from the database, and then disconnect.
If you edit the DataSet, you can also update the database by using the changed data. One
major advantage of the DataSet is that you only need to be connected to the database while
exchanging data; this can make it a more scalable solution.

In this chapter, you will learn how to use ADO.NET to connect to a data source, execute queries,
and perform database update operations. You will also learn how to use a DataSet in a disconnected
application. You will see how to fill a DataSet with data from a database and display that data in a
grid.

334   Microsoft Visual C++/CLI Step by Step

Note  ADO.NET provides access to any kind of relational database. To avoid the need to
download and install database engines and deal with complex setups, the examples in this
chapter use a Microsoft Access database. However, I want to emphasize that the principles
are exactly the same whether you’re using Access or Microsoft SQL Server, and if you write
your code correctly, you should only have to change the configuration file to change to an-
other database type.

What is ADO.NET?

ADO.NET is a strategic API from Microsoft for data access in the modern era of distributed, Internet-
based applications. ADO.NET contains a set of interfaces and classes with which you can work with
data from a wide range of databases, including Microsoft SQL Server, Oracle, Sybase, Access, and
so on.

ADO.NET data providers
ADO.NET uses the concept of a data provider to facilitate efficient access to different types of
databases. Each data provider includes classes to connect to a particular type of database. The
.NET Framework includes six data providers, as shown in the following table:

Data provider Description

System.Data.SqlClient Contains classes that give optimized access to SQL
Server 7 and later

System.Data.OleDb Contains classes that give access to SQL Server 6.5 and
earlier; also provides access to databases such as Oracle,
Sybase, Access, and so on

System.Data.ODBC Contains classes that give access to Open Database
Connectivity (ODBC) data sources

System.Data.OracleClient Contains classes that give access to Oracle databases

System.Data.EntityClient Contains classes that support the Entity Framework
(discussed in Chapter 24, “Living with COM”)

System.Data.SqlServerCe Contains classes that work with SQL Server Compact
Edition

In addition, data providers are available for a number of other databases through third-party
vendors. Supported databases include MySQL, IBM DB2, Informix, Sybase, SQLite, Firebird, and
PostgreSQL.

	 Chapter 18  Using ADO.NET    335

Provider-independent code
In early versions of ADO.NET, developers had to use provider-dependent classes, such as Sql
Connection and SqlCommand. The problem with this approach is that it made it hard to write code
that was independent of the data source, burdening you with a large editing job if you needed to
switch providers.

Version 2.0 introduced a provider-independent interface by using a series of interfaces and classes
whose names begin with “Db,” such as DbConnection and DbCommand. All providers implement
these interfaces, making it possible for you to use all providers in the same way. One advantage of
this approach is that you can specify provider details in an application configuration file, which makes
your code truly independent of the data provider.

It is now strongly recommended that you use the provider-independent interface rather than
using the provider-specific classes directly.

ADO.NET namespaces
The classes in ADO.NET are divided into a number of namespaces, as shown in the following table:

Namespace Description

System::Data This is the core namespace in ADO.NET. Classes in this
namespace define the ADO.NET architecture, and it holds
provider-independent classes that can used for any type
of data source, such as DataSet.

System::Data::Common Defines common classes and interfaces for data providers.

System::Data::EntityClient Defines classes for the Entity Framework data provider.

System::Data::Linq Defines classes that gives access to relational data
through Language-Integrated Query (LINQ)

System::Data::SqlClient Defines classes for the SQL Server data provider.

System::Data::OleDb Defines classes for the Object Linking and Embedding,
Database (OLE DB) data provider.

System::Data::OracleClient Defines classes for the Oracle data provider.

System::Data::Odbc Defines classes for working directly with ODBC.

System::Data::Services Defines classes used to create Windows Communication
Foundation (WCF) data services.

System::Data::Spatial Defines classes that work with spatial data.

System::Data::SqlTypes Defines classes that represent native SQL Server data
types.

336   Microsoft Visual C++/CLI Step by Step

ADO.NET assemblies
Many of the ADO.NET classes are in the System::Data assembly, although some of the newer features
(such as LINQ and Entity Framework) have their own assemblies. To use these assemblies, you need to
include the appropriate using statements in your application, such as in the following example:

#using <System.Data.dll> // This assembly contains ADO.NET classes
#using <System.Data.Entity.dll> // This assembly contains the
 // Entity Framework provider classes

Note  If you are creating projects by using Microsoft Visual Studio 2012, the reference to
System.Data.dll will be provided for you.

Referencing external assemblies
If you want to use a type defined in another assembly, both the compiler and the runtime need
to know where that assembly is located. You might want to reference types from a Common
Language Runtime (CLR) library assembly, from a third-party library assembly, or even from
another assembly that you’ve created in the same solution. You can add references to all these
types of assembly in the same way.

On the Project menu, click properties to open the Project Properties dialog box. Select
Common Properties and then, in the pane on the left, click Framework And References. At the
bottom of the window, click the Add New Reference button. In the Add Reference dialog box
that opens, in the pane on the left pane, click one of the options. For example, selecting As-
semblies and then Framework displays all the CLR library assemblies for you to browse. Select
the entry you require and then press OK twice to dismiss both dialog boxes. If you now expand
the External Dependencies item in Solution Explorer, you will see the new dependency in the
list.

After you have imported the assemblies you require, you can add using directives for the
namespaces, as shown in the following example:

using System::Data::SqlClient;

Creating a connected application

In the next few pages, you will create a C++/CLI application that connects to an Access database. You
will see how to set up the database connection and provider details in the application configuration
file and then use a DbConnection object to establish a connection.

	 Chapter 18  Using ADO.NET    337

After you are connected, you will create a DbCommand object to represent a SQL statement. You
will then perform the following tasks:

■■ Use the ExecuteScalar method on DbCommand to execute a statement that returns a single
value.

■■ Use the ExecuteNonQuery method on DbCommand to execute a statement that updates the
database.

■■ Use the ExecuteReader method to execute a statement that queries the database. Execute
Reader returns a DbDataReader object, which provides fast, forward-only access to the rows
in the result set. You will use this DbDataReader object to process the result set.

Note  You can find the sample database for this exercise, blog.mdb, in the sample code files
for this book. Before starting the exercise, copy this file to a directory on your hard disk.

Connecting to a database
In this exercise, you will create a new application to perform all the operations described in the pre-
ceding section. The first step is to connect to the database.

1.	 Start Microsoft Visual Studio 2012 and create a new CLR Console Application project named
ConnectedApplication.

2.	 In the ConnectedApplication.cpp file, after the using namespace System; statement, add the
following statements:

// Generic ADO.NET definitions
using namespace System::Data;
// Provider-independent classes
using namespace System::Data::Common;

3.	 Add an application configuration file to the project. In Solution Explorer, right-click the project
name to open the Add New Item dialog box (via the shortcut menu). In the pane on the left,
click Utility, and then select Configuration file (app.config) as the file type. Press Add, and a file
named app.config will be added to the project and opened in the editor.

338   Microsoft Visual C++/CLI Step by Step

Application configuration files
An application can have an XML configuration file whose name consists of the name of the ap-
plication with a .config extension, and which is located in the same directory as the executable.
For example, an application called MyApp.exe would have a configuration file called MyApp.exe.
config.

The application configuration file contains settings specific to an application. These settings
might override or add to computer-level configuration settings. The configuration file can also
be used to store configuration information such as connection strings and error messages.

You can add a configuration file to a project and edit it to add the appropriate settings.
When the project is built, the configuration file needs to be renamed to include the executable
name, and copied to the output directory.

Unfortunately, Visual Studio 2012 does not perform this copying and renaming automati-
cally when building a C++ project. You can, however, add this as a custom build step to your
project. Open the Project Properties dialog box and choose Configuration Properties. Then,
in the column on the left, click Build Events And Post-Build Event. Edit the Command entry to
read as follows:

copy app.config "$(TargetPath).config"

When you next build your project you should see the message “1 file(s) copied” displayed in
the Output pane, toward the end of the build. Note the double quotes around the destination.
They are needed if the path to the executable contains spaces, and if that is the case and you
forget to put them in, the command will fail to execute.

4.	 Edit the app.config file to add a connection string.

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <connectionStrings>
 <clear/>
 <add name="Blog"
 connectionString=
 "Provider=Microsoft.Jet.OLEDB.4.0;Data Source=C:\path\to\blog.mdb"
 providerName="System.Data.OleDb" />
 </connectionStrings>
</configuration>

Remember to edit the path to the location where you stored the blog.mdb database file.

The connectionStrings section holds connection string information. The clear element clears
out the collection in case any have been inherited from computer configuration settings. In
this example, we are defining a connection string, identified by the name Blog, which connects
to an Access database file by using the System.Data.OleDb provider.

	 Chapter 18  Using ADO.NET    339

5.	 To work with configuration files, you need to add a reference to System.Configuration.dll. Do this
by following the instructions given in the sidebar “Referencing external assemblies” earlier in
the chapter.

6.	 Add a using namespace directive for System.Configuration.

using namespace System::Configuration;

7.	 At the top of the main function, retrieve the connection string settings from the .config file.

ConnectionStringSettings ^settings = ConfigurationManager::ConnectionStrings["Blog"];
if (settings == nullptr)
{
 Console::WriteLine("Couldn't get settings");
 return -1;
}
Console::WriteLine("Have settings");

The ConfigurationManager class is responsible for interacting with settings stored in configu-
ration files, and as such, it maintains a collection of ConnectionStringSettings objects, which
you can access by using an indexer. If the call returns null, there isn’t an entry with that name
in the .config file.

8.	 After you have the ConnectionStringSettings object, you can use its ProviderName property to
get a DbProviderFactory:

 // Get the factory object for this provider type
 DbProviderFactory ^fac = DbProviderFactories::GetFactory(settings->ProviderName);

The DbProviderFactory is a factory that creates the various other objects that we need—
connections, commands, and so on. You use DbProviderFactory the same way, regardless of
the actual provider being used underneath.

9.	 After you have the factory, use it to create a connection and open it.

DbConnection ^conn = nullptr;
try
{
 // Create a connection and set its connection string
 conn = fac->CreateConnection();
 conn->ConnectionString = settings->ConnectionString;

 conn->Open();
 Console::WriteLine("Connection opened");}
catch (Exception ^ex)
{
 Console::WriteLine(ex->Message);
}
finally
{
 if (conn != nullptr) conn->Close();
 Console::WriteLine("Connection closed");
}

340   Microsoft Visual C++/CLI Step by Step

Just about everything you do with databases can generate an exception, so you should always
enclose your database code in a try block. Connections need to be opened before they are
used, and it is important to close them afterward so that you free up resources. The best way
to do this is to use a finally block, which ensures that the connection is closed whether or not
an exception occurs.

10.	 Build your application and fix any compiler errors.

11.	 Run the application.

If all is well, on the console, you see the message shown in the figure that follows.

Creating and executing a command
In this exercise, you will create a DbCommand object that represents the following SQL statement:

SELECT COUNT(*) FROM Entries

This statement returns an integer indicating how many rows are in the Entries table. You will ex-
ecute this statement by using the ExecuteScalar method on the command object.

1.	 Continue with the project from the previous exercise.

2.	 In the main function, add the following code to the try block, after the statement that opens
the database connection:

// Count the entries
DbCommand ^cmd = fac->CreateCommand();
cmd->CommandText = "SELECT COUNT(*) FROM Entries";
cmd->CommandType = CommandType::Text;
cmd->Connection = conn;

This code creates and configures a DbCommand object that encapsulates a SQL statement.
The CommandText property defines the SQL to be executed, and CommandType says that
this is a SQL command, as opposed to a stored procedure. The Connection property specifies
which database connection to use when executing the command.

	 Chapter 18  Using ADO.NET    341

3.	 Add the following code to execute the SQL statement and display the results on the console:

// Print the result
int numberOfEntries = (int)cmd->ExecuteScalar();
Console::WriteLine("Number of entries: {0}", numberOfEntries);

4.	 Build your application and fix any compiler errors.

5.	 Run the application.

The message shown in the following figure should appear on the console:

Executing a command that modifies data
In this exercise, you will add a new entry into the database by using the following SQL statement:

INSERT INTO [Entries] ([Date], [Text], [Author])
 VALUES ('Dec 02, 2012', 'Some text', 'Julian')

Note  Some fields in the SQL are surrounded with square brackets in case they have the
same name as predefined entities or types within Access.

You will use the ExecuteNonQuery method to execute this statement, which will return an integer
to indicate how many rows the statement affected. Because you are inserting a single row, you’d
expect this value to be 1.

1.	 Continue with the project from the previous exercise.

2.	 Find the code you wrote in the previous exercise and add the following statement:

// Update the prices of products
cmd->CommandText =
 "INSERT INTO [Entries] ([Date], [Text], [Author])"
 " VALUES ('Dec 02, 2012', 'A blog entry', 'Julian')";

342   Microsoft Visual C++/CLI Step by Step

This code reuses the DbCommand object from the previous exercise but specifies a different
SQL statement.

Tip  It is a little-known feature of C++ that if the preprocessor sees two string literals
on adjoining lines, it will combine them. This is a useful way to split up and format
long strings.

3.	 Add the following code to execute the SQL statement and display the results on the console:

int rowsAffected = cmd->ExecuteNonQuery();
Console::WriteLine("Added {0} rows", rowsAffected);

4.	 Build your application and fix any compiler errors.

5.	 Run the application.

The message shown in the following figure should appear on the console:

Executing queries and processing the results
In the final part of this connected application exercise, you will execute a command that retrieves
information from the database by using the following SQL statement:

SELECT * FROM Entries

You will use the ExecuteReader method to execute this statement. This will return a DbDataReader
object, which is a fast, forward-only reader that reads through each row in the result set in turn.

1.	 Continue with the project from the previous exercise.

2.	 Find the code you wrote in the previous exercise and add the following statement:

// Query the database
cmd->CommandText = "SELECT * FROM Entries";

	 Chapter 18  Using ADO.NET    343

This code reuses the DbCommand object from the previous exercise but specifies a different
SQL statement.

3.	 Add the following code to execute the SQL statement and return a DbDataReader object:

DbDataReader ^reader = cmd->ExecuteReader();

4.	 Add the code that follows to loop through the results one row at a time. For each row, output
the values of all four columns. The first, the record ID, is an integer, but the other three (Date,
Text and Author) are all strings.

Console::WriteLine("\n------------------------------------");
while (reader->Read())
{
 Console::WriteLine("{0}: {1} by {2}", reader->GetInt32(0),
 reader->GetString(1), reader->GetString(3));
 Console::WriteLine(" {0}", reader->GetString(2));
}
Console::WriteLine("--------------------------------------");

The Read method steps through the record set one row at a time. Notice the use of the
strongly typed methods GetString and GetInt32.

5.	 After the loop, close the reader.

reader->Close();

6.	 Run the application.

The message shown in the following figure should appear on the console: (You might get dif-
ferent values than what’s shown here.)

344   Microsoft Visual C++/CLI Step by Step

Creating a disconnected application

For the rest of the chapter, we’ll turn our attention to disconnected applications. A disconnected
application is one that does not have a permanently available connection to the data source. Applica-
tions are much more scalable when they only need a database connection to retrieve or send data
back, and it is possible for an application such as a website to support many users with only a handful
of database connections.

In ADO.NET, the DataSet class represents a disconnected, local data store. The following figure
shows the DataSet object model:

A DataSet is an in-memory collection of DataTable objects and the relationships between them.
You can create many DataTables in a DataSet to hold the results of more than one SQL query.

Each DataTable has a collection of DataRows and DataColumns. Each DataColumn contains
metadata about a column, such as its name, data type, default value, and so on. The DataRow objects
actually contain the data for the DataSet.

You can create a DataSet from scratch, creating DataTables, setting up a schema using Data
Columns, and then adding DataRows. It is, however, much more common to use a DataSet with a
database.

The key to doing this is the data adapter, which sits between the database and the DataSet. The
adapter knows how to retrieve data from the database and how to insert and update data. Each
provider has its own data adapter class, but as you’d expect, you work with the provider-independent
DbDataAdapter type.

	 Chapter 18  Using ADO.NET    345

The following figure shows how data adapters work with DataSets:

Each data adapter works with a single DataTable in a DataSet. You call the Fill method on a
data adapter to fill the DataSet with data from the database. You call the Update method on a data
adapter to save any changes in the DataSet back to the database.

Internally, the data adapter has four command objects, one each for the select, delete, insert, and
update operations, each of which encapsulates a SQL command. The following table describes these
command objects:

Command object in a data adapter Description

SelectCommand Contains a SQL SELECT statement to retrieve data from
the database into the DataSet table

InsertCommand Contains a SQL INSERT statement to insert new rows from
the DataSet table into the database

UpdateCommand Contains a SQL UPDATE statement to modify existing
rows in the database

DeleteCommand Contains a SQL DELETE statement to delete rows from the
database

Disconnected operation using a DataSet

This exercise shows you how to create a DataSet, fill it by using a DataAdapter, and extract data from
the tables in the DataSet. The details of setting up the configuration and getting a connection are
exactly the same as for the previous exercise, so you will be able reuse a lot of the code.

1.	 Start a new CLR Console project project named DataSetApp.

2.	 Add an external reference to the System::Configuration assembly by using the Properties dia-
log box, as detailed in the sidebar “Referencing external assemblies” earlier in the chapter.

346   Microsoft Visual C++/CLI Step by Step

3.	 Add using statements to the top of the source file for the assemblies that you are going to be
using.

// ADO.NET namespaces
using namespace System::Data;
using namespace System::Data::Common;
// For reading the configuration data
using namespace System::Configuration;
// For printing the content of the DataSet
using namespace System::IO;

4.	 Add an application configuration file to the project. In Solution Explorer, right-click the project
name. On the shortcut menu that appears, point to Add, and then click New Item. In the New
Item dialog box that opens, in the pane on the left, click Visual C++, and then click Utility. In
the center pane, click Configuration file (app.config).

5.	 Remember to add the post-build step to the project settings so that app.config will be re-
named to match the executable name. You can find details on how to do this in the previous
exercise.

6.	 Copy the content of the app.config file from the previous exercise, “Creating a connected ap-
plication.” Here is the content that you need:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <connectionStrings>
 <clear/>
 <add name="Blog"
 connectionString=
 "Provider=Microsoft.Jet.OLEDB.4.0;Data Source=C:\path\to\blog.mdb"
 providerName="System.Data.OleDb" />
 </connectionStrings>
</configuration>

Remember to edit the path to reflect wherever you have stored the blog.mdb file.

7.	 Copy the code to read the connection string settings and create the DbProviderFactory. (The
code is given here, but it is exactly the same as for the previous exercise.)

// Get the connection settings
ConnectionStringSettings ^settings =
 ConfigurationManager::ConnectionStrings["Blog"];
if (settings == nullptr)
{
 Console::WriteLine("Couldn't get settings");
 return -1;
}
Console::WriteLine("Connection settings OK");

// Get the factory object for this provider type
DbProviderFactory ^fac = DbProviderFactories::GetFactory(settings->ProviderName);

	 Chapter 18  Using ADO.NET    347

8.	 Add a try block in which you create a connection, a catch block to handle any errors, and a
finally block to close the connection. (Again, I have reproduced the code here, but you should
be able to copy it from the previous exercise.)

DbConnection ^conn = nullptr;
try
{
 // Create a connection and set its connection string
 conn = fac->CreateConnection();
 conn->ConnectionString = settings->ConnectionString;

 conn->Open();
 Console::WriteLine("Connection opened");
}
catch (Exception ^ex)
{
 Console::WriteLine(ex->Message);
}
finally
{
 if (conn != nullptr)
 {
 conn->Close();
 Console::WriteLine("Connection closed");
 }
}

9.	 With that setup complete, you can begin retrieving data. Start by asking the factory to create
a DataAdapter.

// Create a DataAdapter and set its select command
DbDataAdapter ^adapter = fac->CreateDataAdapter();

10.	 A DataAdapter can have four commands associated with it, but because you are only going
to be retrieving data, you only need to set the Select command. Do this by creating a
DbCommand object, as in the previous exercise, and then assigning it to the SelectCommand
property of the adapter.

DbCommand ^cmd = fac->CreateCommand();
cmd->CommandText = "SELECT * FROM Entries";
cmd->CommandType = CommandType::Text;
cmd->Connection = conn;

adapter->SelectCommand = cmd;

11.	 You can now create a DataSet and ask the adapter to fill it.

DataSet ^dataset = gcnew DataSet("Blog");
adapter->Fill(dataset, "Entries");

The first line creates an empty DataSet called “Blog”. Calling Fill on the adapter causes it to
execute its SelectCommand, which creates a DataTable called “Entries”, fills it with the result of
the query, and then adds it to the DataSet’s collection of DataTables.

348   Microsoft Visual C++/CLI Step by Step

Giving names to DataSets and DataTables is optional, but as you will see shortly, it is very use-
ful when building XML documents from DataSet data.

Note  In a larger application, you could now close the connection to the database
because you have the data locally in the DataSet.

12.	 Now that you have a DataSet, it would be useful to look at what it contains. The WriteXml
function writes the content of a DataSet in XML format to any stream. The XmlTextWriter class
provides a useful stream for our purposes because it writes the output to a file in properly
formatted form.

XmlTextWriter ^xwriter = gcnew XmlTextWriter("c:\\SbS\\dataset.xml", nullptr);
xwriter->Formatting = Formatting::Indented;

The first two lines create an XmlTextWriter and ensure that it writes out the XML with indenta-
tion. Edit the path to put the XML file in a suitable location. Remember that you need to add a
using namespace statement for System::Xml, or use the full name System::Xml::XmlTextWriter.

Note  The null second argument to the constructor means that the default UTF-8
encoding will be used. If you want to use another encoding, specify it like this:

XmlTextWriter ^xwriter = gcnew XmlTextWriter("c:\\SbS\\dataset.xml",
Encoding::Unicode);

The Encoding class is in the System::Text namespace, so you will need to add a using
declaration if you don’t want to use the fully qualified name.

13.	 Use the table’s WriteXml method to write the data out to the file.

DataTable ^table = dataset->Tables[0];
		
table->WriteXml(xwriter, XmlWriteMode::IgnoreSchema);
xwriter->Close();

The declaration of the DataTable handle makes the following code simpler and shows how
the table created by the adapter is the first one in the DataSet’s Tables collection. Because
you gave the table a name when the adapter created it, you could also specify the name here
rather than the ordinal. The second argument to WriteXml shows that you only want the data
and not the schema.

14.	 Build and run the application and then open the XML file in Notepad; you should see that the
first few lines look like this:

<Blog>
 <Entries>
 <ID>2</ID>
 <Date>Jul 01, 2009</Date>

	 Chapter 18  Using ADO.NET    349

 <Text>A first entry</Text>
 <Author>Julian</Author>
 </Entries>
 <Entries>
 <ID>3</ID>
 <Date>Jun 27, 2009</Date>
 <Text>Second entry</Text>
 <Author>Julian</Author>
 </Entries>
 ...

The root element has the same name as the DataSet, and each row is named after the table. If
you hadn’t assigned names to the DataSet and DataTable, the root element would have been
called “NewDataSet” and each row would have been called “Table”.

15.	 Change the WriteXml statement so that it includes the schema in the generated data.

table->WriteXml(xwriter, XmlWriteMode::WriteSchema);

Build and run the application again; you should see that the output file contains an XML
schema that describes the data.

<Blog>
 <xs:schema id="Blog" xmlns="" xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:msdata="urn:schemas-microsoft-com:xml-msdata">
 <xs:element name="Blog" msdata:IsDataSet="true"
 msdata:MainDataTable="Entries" msdata:UseCurrentLocale="true">
 <xs:complexType>
 <xs:choice minOccurs="0" maxOccurs="unbounded">
 <xs:element name="Entries">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="ID" type="xs:int" minOccurs="0" />
 <xs:element name="Date" type="xs:string" minOccurs="0" />
 <xs:element name="Text" type="xs:string" minOccurs="0" />
 <xs:element name="Author" type="xs:string" minOccurs="0" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:choice>
 </xs:complexType>
 </xs:element>
 </xs:schema>
 <Entries>
 <ID>2</ID>
 <Date>Jul 01, 2009</Date>
 <Text>A first entry</Text>
 <Author>Julian</Author>
 </Entries>
 ...

350   Microsoft Visual C++/CLI Step by Step

Quick reference

To Do this

Use ADO.NET classes. If you are using Visual Studio 2012, you will need to add
only a using directive for the appropriate assemblies. For
example:

using namespace System::Data;
using namespace System::Data::Common;

Store connection strings in the application configuration
file.

Add an application configuration file to the project, and
add a post-build event to rename it:

copy app.config $(TargetPath).config

Then, add one or more connection string sections to the
.config file. For example:

<?xml version="1.0" encoding="utf-8" ?>
 <configuration>
 <connectionStrings>
 <add name="NWind"
 connectionString=
 "Provider=Microsoft.Jet.OLEDB.4.0;"
 "Data Source=C:\SbS\Blog.mdb"
 providerName="System.Data.OleDb" />
 </connectionStrings>
</configuration>

Connect to a database. Obtain the provider factory by using the provider name.
For example:

DbProvideFactory ^factory =
 DbProviderFactories::GetFactory(name);

Then create a DbConnection object, and configure its
ConnectionString property. For example:

DbConnection ^conn = factory->CreateConnection();
conn->ConnectionString = connString;

Create a SQL command. Create a DbCommand object and configure its
CommandText, CommandType, and Connection properties.

Execute a command. If the command returns a scalar value, call ExecuteScalar.
If the command modifies the database, call Execute
NonQuery. If the command performs a query, call
ExecuteReader. Assign the result to a DbDataReader
object and use this reader to loop through the result set.
For example:

DbDataReader ^reader = cmd->ExecuteReader();
while (reader->Read())
{
 Console::Write(reader->GetString(0));
}

Use data in a disconnected application. Create a DbDataAdapter, add DbCommands to access
the database, and then set its connection. Create a
DataSet and fill the DataSet by using the data adapter. For
example:

DbDataAdapter ^daTitles =
 factory->CreateDataAdapter();
daTitles->SelectCommand = cmd;
daTitles->Connection = conn;
DataSet^ ds = gcnew DataSet("Titles");
daTitles->Fill(ds);

		 351

C H A P T E R 1 9

Writing a service by using
Windows Communication
Foundation

After completing this chapter, you will be able to:

■■ Describe what Windows Communication Foundation is.

■■ Write services by using Windows Communication Foundation.

■■ Write clients to use Windows Communication Foundation services.

What is Windows Communication Foundation?

Windows Communication Foundation (WCF) is Microsoft’s platform for writing distributed, service-
based applications. Previously known as Indigo, it provides a framework for writing services and
clients.

More Info  WCF is a very complex topic, and this chapter can only provide an introduction.
If you want to read more, I would suggest Windows Communication Foundation 4 Step by
Step by John Sharp, published by Microsoft Press.

We live in an increasingly connected and distributed world. When you visit a website, your browser
connects across the Internet to a server, and that server in turn might be using other servers to pro-
vide it with resources.

When you do this, you have in effect created a distributed application. Your browser provides
the user interface, the web server provides the middle tier, and there can be other back-end servers
providing the data tier. One very important feature of systems like this is that you can connect com-
pletely separate pieces together at run time to get the functionality that you want.

352   Microsoft Visual C++/CLI Step by Step

These pieces might be written by using different languages and frameworks, and run on different
operating systems. All that is important is the functionality that they provide, not the details of their
implementation.

With WCF, you can define contracts that specify, in a language and platform-independent manner,
what services your components can provide, and these define the interface of your component to the
outside world. The implementation details are immaterial to the user.

Distributed systems
Early frameworks for distribution tended to be proprietary. Microsoft’s Distributed Component Object
Model (DCOM) was intended to connect components written by using Microsoft technologies run-
ning on Windows. Java’s Remote Method Invocation (RMI) was intended to do the same thing in the
Java world.

Although these are still in use, the world has moved toward a need for more connectivity and
independence, and so service-based systems have become increasingly popular.

Services
One of the hallmarks of modern service-based systems is the ability to compose parts together that
have been developed independently.

This is done through the use of standards rather than proprietary technologies. So, for example,
we can use XML and HTTP to connect two components rather than RMI, which was designed to work
between Java components.

You will see shortly how WCF supports a wide range of the most popular and widely used stan-
dards, making it possible for you to create any type of service that you might need.

Characteristics of services
Services have the following distinguishing characteristics:

■■ Platform and language independence  Services are written in such a way that they are not
dependent on clients using a particular language or framework to access them.

■■ Independent and autonomous  Services are independent in the same way that a website is
independent.

■■ Use well-known standards  Services make use of standard protocols, such as TCP/IP and
HTTP, and data representations, such as XML. Doing this decouples clients of the service from
the implementation.

	 Chapter 19  Writing a service by using Windows Communication Foundation    353

■■ Discoverability  Many services publish metadata so that potential clients can discover what
they offer and how to access them.

■■ Reusability  Because services are independent, when properly designed they can be com-
bined into new distributed applications.

Connectivity
A component that you want to interact with could reside in another process on the same computer,
on another computer on your local network, or out on the Internet. You have several options for con-
necting to such components.

For components that reside on the same computer, you would use an inter-process communica-
tion (IPC) mechanism such as named pipes, whereas for components deployed on other computers,
you could use TCP/IP for binary communication or HTTP for text communication. In the enterprise
world, it is also common to use messaging systems such as Microsoft MSMQ or IBM MQ to connect
components located on different devices.

The problem here is that each of these communication mechanisms is implemented in a different
way, using different libraries and techniques. A developer experienced in using TCP would have to
learn how to use messaging.

WCF simplifies this by letting developers indicate how they want their components to be con-
nected and leaving it up to the framework to implement the connection. For example, you can use an
attribute to say that a class should be exposed as a web service using HTTP, and WCF will generate all
the required code and configuration.

The ABCs of WCF

WCF contains a lot of detail—a lot of moving parts—and it is very easy to lose sight of what is impor-
tant in a mass of detail. There is, however, a certain number of things that you need to know to work
with WCF, and so in this section I present enough details on how WCF works and what it does that
you will be able to write and consume a simple service, and appreciate other features of WCF that you
might want to use in future projects.

Endpoints
A service in WCF is called an endpoint. Endpoints are characterized by three facets:

■■ Address  Where to find the service

■■ Binding  How to talk to the service

■■ Contract  What the service can do

354   Microsoft Visual C++/CLI Step by Step

The following figure shows how address, binding, and contract are related to a service:

The client talks to the service through an address linked to a binding. The binding then invokes
the service operation through the contract, but the implementation is well hidden from the client. A
service can also expose more than one endpoint; these might be the same operations using different
bindings (for example, HTTP and TCP) or different logical sets of operations (such as user and admin-
istrator interfaces).

Endpoint definitions are used by both services and clients to instruct the WCF framework what to
do. You can set up endpoints in code, but setting them up declaratively in configuration makes it pos-
sible to reconfigure services without having to rebuild the code.

The next three sections look at each of the three endpoint aspects in turn.

Address
Every endpoint has an address composed from the following items:

■■ The transport protocol—http: is one example.

■■ The name of the server running the service, such as //myserver.com or //localhost. This might
be followed by a port number, if necessary, such as //localhost:8080.

■■ The path to the service endpoint; for example, /MyService.

Thus, to use HTTP to talk to a service called MyService, which is located at port 8080 on the local
computer, you would use the following address:

http://localhost:8080/MyService

WCF supports four transports, as summarized in the following table:

Transport Protocol Comments

HTTP http: or https: Port 80 (443 for HTTPS)

TCP/IP net.tcp: Default port is 8080

IPC net.pipe: Must use localhost or local computer
name

MSMQ net.msmq: Can use private queues

	 Chapter 19  Writing a service by using Windows Communication Foundation    355

Base addresses
You might have several endpoints on the same server, which means that they will have the first part of
their addresses in common. To make configuration simpler (and save typing!) you can specify a base
address, and then assign relative addresses to the endpoints.

Metadata Exchange addresses
WCF services can publish metadata to clients, and this is done through a Metadata Exchange (MEX)
address. This takes the form of an endpoint address with /mex appended to the end. Requests to this
address will return the metadata for the service. This will be in the form of Web Service Definition
Language (WSDL). You will see a MEX endpoint in use later in the chapter when Microsoft Visual Stu-
dio uses it to create a proxy in client code.

Binding
A binding describes the details of how to connect to a service, such as the transport to use, the mes-
sage encoding, and whether security or transaction support is required.

A binding is simply a collection of settings, and you can create your own bindings. However, you
seldom need to do this because WCF supports several bindings to cover for the most standard sce-
narios, as summarized in the following table:

Name Transport Encoding Used

BasicHttpBinding HTTP/HTTPS Text, MTOM Clients expecting legacy
ASMX web service

WSHttpBinding HTTP/HTTPS Text, MTOM Non-WCF client

WSDualHttpBinding HTTP Text, MTOM Non-WCF client
(bidirectional)

NetTcpBinding TCP/IP Binary WCF client on another
computer

NetMsmqBinding MSMQ Binary WCF client using Microsoft
Message Queuing (MSMQ)

NetNamedPipeBinding Named pipes Binary WCF client on the same
computer

This table demonstrates that if you want to use HTTP as the transport, you could pick WSHttpBinding
or WSHttpDualBinding, depending on whether or not you need bidirectional communication.

356   Microsoft Visual C++/CLI Step by Step

Contract
Contracts define what a service can do, and contract details are expressed in metadata for clients
to use.

WCF supports four kinds of contracts:

■■ Service contracts  A service contract exposes a .NET class or interface as a service.

■■ Operation contracts  An operation contract exposes a method on a type as a service. (You
can only make methods into operations, not properties).

■■ Data contracts  A data contract is used to instruct WCF how to use custom types in service
calls. WCF knows about a range of basic types, such as numbers and strings, but if you want
to use a Person type as an operation parameter or return type, WCF will need to know what a
Person object contains.

■■ Fault contracts  A fault contract is used to define error behavior.

You use contracts declaratively, by adding attributes to code. Here is a simple example of a service
contract:

[ServiceContract]
interface class Foo
{
 [OperationContract]
 int SomeFunction(double d);
};

The interface is annotated with the ServiceContract attribute, which informs WCF that you are
defining a set of operations. Individual functions within the interface are marked with Operation
Contract, which makes them available to clients. Any function that isn’t marked with OperationContract
will not be exposed to clients.

The operation SomeFunction only uses built-in types, and WCF knows how to marshal those. Sup-
pose, though, that you wanted to expose a function like the following as an operation:

Person^ GetPersonById(int id);

Note  Marshaling is the process of converting data and sending it to another component.
This can involve converting it to an intermediate form for transmission over a network, and
it can result in the receiver getting a different representation than that of the sender.

	 Chapter 19  Writing a service by using Windows Communication Foundation    357

In this case, you would have to instruct WCF how to marshal objects of type Person, and you could
do this by using a DataContract:

[DataContract]
ref class Person
{
 [DataMember]
 String ^name;
 …
};

The DataContract class defines this as being a serializable class, and you apply DataMember to all
fields that you want to be serialized. If you don’t want or need to send a field, don’t annotate it; this
will cut down the amount of data being sent over the wire.

Note  As of .NET 3.5, you often don’t have to annotate your types with DataContract and
DataMember, because public members will be made available by default. But it might be
wise to still use it, making explicit those members that you want passed to clients.

Message exchange patterns
Communication between clients and services can be one-way or bi-directional. WCF supports three
message exchange patterns (MEPs) that govern how clients communicate with services:

■■ Request-response

■■ One-way (also called simplex)

■■ Duplex (also called bi-directional)

Request-response is the default, and is typically used when the client expects a reply from the
service. For example, consider this operation:

Person^ GetPersonById(int id);

The client calls the service with an ID and expects to get a Person back. Using request-response
messaging, the client will block (and the connection will be maintained) until either the response has
been received or a fault has been sent. This means that request-response message is synchronous, as
demonstrated in the following illustration:

358   Microsoft Visual C++/CLI Step by Step

Note  The operation does not have to have a return type in order to use request-response
messaging; it is quite possible to use it with an operation that has a void return type.

When using one-way (or simplex) messaging, the client sends a request but does not expect a
response. This allows WCF to drop the connection to the service as soon as the call has been made
because it does not have to wait for a reply. It also means that the operation must have a void return
type because nothing will be returned, and it cannot declare a fault contract, because there is no way
to get the error details back to the caller. One-way operations are useful for fire-and-forget opera-
tions such as logging or event notifications. They can also be useful for performing long-running op-
erations asynchronously, where the client can use polling to ascertain when the server has the results
ready. The following figure illustrates one-way messaging:

Duplex operation implies two-way communication between a client and service. Both ends can
initiate a call, and neither has to wait for the other to finish before sending. To achieve this, service
contracts specify a callback contract that the client must implement and which the service will call
when it wants to call back to the client, as depicted in the following illustration:

Not all bindings support all MEPs. The following table summarizes what you can use:

Binding MEPs Comments

BasicHttpBinding One-way and request-response only HTTP does not support duplex
operation

WSHttpBinding One-way and request-response only

WSDualHttpBinding All MEPs Simulates duplex by using two
channels

NetTcpBinding All MEPs Supports full duplex messaging

NetMsmqBinding Supports one-way and duplex Does not support request-response

NetNamedPipeBinding One-way, request-response, and half-
duplex

Duplex messaging, but not in both
directions at once

Behaviors
Services have default ways of working. If you want to modify these, you use behaviors, which modify
or extend the operation of services.

	 Chapter 19  Writing a service by using Windows Communication Foundation    359

Examples of behaviors include:

■■ How service objects are created. Is there just one or is there a new object created per call?

■■ How the service handles concurrent calls.

■■ Limiting the number of simultaneous connections.

■■ Handling transactions.

A detailed description of behaviors and how to use them is beyond the scope of this book.

Creating a service

In this exercise, you will see how to create and test a simple service that provides mathematical opera-
tions. To follow best practices, the service will be defined as an interface, with the implementation in a
separate class.

1.	 Create a CLR Console Application project named MathService.

2.	 Add an external reference to System::ServiceModel and then add the following two using
declarations:

using namespace System::ServiceModel;
using namespace System::ServiceModel::Channels;

3.	 Add a header file named IMathService.h to the project, and use it to define the following
interface:

#ifndef IMATHSERVICE_H
#define IMATHSERVICE_H

[ServiceContract]
public interface class IMathService
{
 [OperationContract]
 virtual double Square(double d);

 [OperationContract]
 virtual double Cube(double d);
};

#endif

This declares a service as an interface. It is good practice to define services using an interface
because this decouples the implementation from the definition. This is being declared in a
separate header file because the client will need the interface definition, as well.

360   Microsoft Visual C++/CLI Step by Step

Include files and the preprocessor
You might not have encountered this use of the preprocessor before. One of the problems with
include files is that, in complex code, you can end up with multiple inclusions. Suppose that
you’ve written A.h to include B.h and C.h, and that both of those include D.h. That file will be
included twice, and you’ll probably get errors due to multiple definitions.

This usually happens deeply nested in a tree of include files, and it can be a hassle to sort
out. The recommended way around it is to use an include guard, such as the one defined in
the previous example. The first line says that if the preprocessor symbol IMATHSERVICE_H is
not defined, include the contents of the file up until the #endif. The second line then defines
the symbol, and this means that if another attempt is made to include the same file within this
compilation, the first #ifndef will fail and the code won’t be included.

You can make the symbol just about anything you like, but it is common to base it on the
name of the include file to avoid any possible duplication, and it is convention to define sym-
bols in capitals.

4.	 Open the MathService.cpp file and add the definition for a class that implements the service.
You’ll need to add an include statement to get the interface definition.

#include "IMathService.h"

ref class MathService : IMathService
{
public:
 virtual double Square(double d)
 {
 return d*d;
 }

 virtual double Cube(double d)
 {
 return d*d*d;
 }
};

5.	 You can now start to implement the main method to host the service.

int main(array<System::String ^> ^args)
{
 WSHttpBinding ^binding = gcnew WSHttpBinding();
 Uri ^baseAddress = gcnew Uri("http://localhost:8080/MathService");
}

These first two lines create a binding and a base address for the service. Because this is a basic
HTTP service, you create a WSHttpBinding and an HTTP address.

	 Chapter 19  Writing a service by using Windows Communication Foundation    361

6.	 Create a ServiceHost object and add an endpoint to it.

ServiceHost ^host = gcnew ServiceHost(MathService::typeid, baseAddress);
host->AddServiceEndpoint(IMathService::typeid, binding, baseAddress);

The ServiceHost is the object that implements the WCF behavior for you. It is initialized with
details of the service implementation class (so that it knows what to call when requests
come in) and the base address. You can then add an endpoint to the ServiceHost so that it
knows to support the WSHttpBinding on the given base address and that it is supporting the
IMathService contract.

7.	 Run the service.

host->Open();
Console::WriteLine("Service running... press Enter to terminate");
Console::ReadLine();
host->Close();

The call to Open starts the service listening for connections. But this is not a blocking call, so
you need to keep the application running until you’re ready to close the connection. An easy
way to do this is simply to output a prompt and wait for the user to press Enter. When the user
does press Enter, ensure that you close the host to free resources.

8.	 Build the application and run it to check that you have no errors.

When you try to run the application, you should find that it crashes with an exception of
type System::ServiceModel::AddressAccessDeniedException. This is because Windows wants to
prevent possibly malicious code running without authorization, so you need to run the appli-
cation with sufficient privilege. There are two ways to do this: one is to register the service by
using the netsh command so that Windows will allow it to run; the other is to run the applica-
tion as an administrator, because administrators have rights to run services. To do that, you
can either start a command prompt as administrator and run the application from the com-
mand line or run Visual Studio as administrator and run the application from there.

To run applications as administrator in Windows 8, right-click the application’s tile on the Start
screen and then, on the appbar menu that slides up from the bottom of the screen, click Run
As Administrator.

Writing a service client
The next step is obviously to write a client to test out the service. There is a WCF Test Client included
with Visual Studio, but you won’t be able to use that until you’ve added metadata support to the
service, and we will leave that until later in the chapter.

1.	 Create another CLR Console Application named TestClient.

362   Microsoft Visual C++/CLI Step by Step

2.	 In Windows Explorer, copy the IMathService.h file to the project directory and add it to the
project. Right-click the project name. On the shortcut menu, point to Add, point to Existing
Item, and then click the header file.

You need to add this file because your client code needs the definition of the interface.

3.	 Add an external reference to the System::ServiceModel assembly, just like you did when creat-
ing the service.

4.	 Add the two using directives for the System::ServiceModel and System::ServiceModel::Channels
namespaces.

using namespace System::ServiceModel;
using namespace System::ServiceModel::Channels;

5.	 Add an #include statement for IMathService.h to the source file TestClient.cpp.

6.	 Start implementing the main function by creating a WSHttpBinding and EndPointAddress.

WSHttpBinding ^binding = gcnew WSHttpBinding();

String ^url = "http://localhost:8080/MathService";
EndpointAddress ^address = gcnew EndpointAddress(url);

7.	 Communication is handled by a Channel, and you get one of those from a ChannelFactory.

ChannelFactory<IMathService^> ^factory =
 gcnew ChannelFactory<IMathService^>(binding, address);
IMathService ^channel = factory->CreateChannel();

Note how the channel implements the interface of the service you want to call, and also has a
binding and address. It therefore has all the details it needs to contact the service and use the
operations it provides.

8.	 Call an operation on the service.

double value = channel->Square(3.0);
Console::WriteLine("Value is {0}", value);

9.	 When you’re done, close the channel.

((IChannel^)channel)->Close();

You need to cast the channel to an IChannel handle because the IMathService doesn’t imple-
ment the Close function.

10.	 Build the application to ensure that you have no errors.

11.	 Run the MathService executable that you created in the previous exercise, which you’ll find
located in the Debug directory of the project. When this has started, run the client as adminis-
trator and you should see the result message printed out.

	 Chapter 19  Writing a service by using Windows Communication Foundation    363

Adding metadata to the service
One of the characteristics of services is that they are discoverable. This means that there is some way
for potential clients to get details of the service, what it can do and how to call it. The standard way to
provide this metadata is as a WSDL document, which describes the service in XML.

More Info  It isn’t important for you to understand WSDL to create and use services, but
if you are interested, you can learn more about it at the w3schools website at http://www.
w3schools.com/wsdl/wsdl_intro.asp.

The next question is how you ask a service for its metadata. WCF services expose their metadata
through an MEX endpoint. When you add such an endpoint, you can choose which transports (HTTP,
TCP) that you want to support, and provide the URL.

You can use the WCF Test Client to examine and call service operations, but your service needs to
publish metadata through an MEX endpoint before you can use this.

This next exercise adds an MEX endpoint to the service. It then shows how you can see the meta-
data and then use the WCF Test Client to exercise the service.

1.	 Continue with the project from the previous exercise.

2.	 Add a using directive for System::ServiceModel::Description to MathService.cpp.

using namespace System::ServiceModel::Description;

3.	 Add the following lines after the call to AddServiceEndpoint and before the call to Open:

// Add MEX endpoint
ServiceMetadataBehavior ^mex = gcnew ServiceMetadataBehavior();
mex->HttpGetEnabled = true;
host->Description->Behaviors->Add(mex);

host->AddServiceEndpoint(
 IMetadataExchange::typeid,
 MetadataExchangeBindings::CreateMexHttpBinding(),
 "http://localhost:8080/MathService/mex");

Earlier in the chapter, you learned that behaviors are used to modify the behavior of a service.
The ServiceMetadata behavior makes it possible for the service to expose its metadata via
an MEX endpoint, and you can configure how it exposes this data. In this case, I’ve chosen to
allow clients to access it via an HTTP GET request. The behavior object is added to the host’s
Behaviors collection, and then you add a service endpoint.

The endpoint exposes the IMetadataExchange contract at the URL by using HTTP at the given
address. Note how the standard MEX endpoint address is the service address with /mex
appended.

http://www.w3schools.com/wsdl/wsdl_intro.asp
http://www.w3schools.com/wsdl/wsdl_intro.asp

364   Microsoft Visual C++/CLI Step by Step

4.	 Build the project and then start the service as administrator.

5.	 Start Internet Explorer and type the following URL in the address bar:

http://localhost:8080/MathService?wsdl

By setting the HttpGetEnabled property, you can request the metadata using HTTP by passing
the wsdl parameter. When the request executes, you should see the following WSDL describ-
ing your service in the browser:

You can now run the WCF Test Client, WcfTestClient.exe, which you can find in C:\Program
Files\Microsoft Visual Studio 11\Common7\IDE (or if you are running a 64-bit version of
Windows, it will be in C:\Program Files (x86)\Microsoft Visual Studio 11.0\Common7\IDE).

6.	 When the application starts, in the pane on the left side of the window, right-click the
MyService Projects entry, and then, on the shortcut menu that appears, click Add Service.

7.	 In the Add Service dialog box that opens, enter the service URL (http://localhost:8080/
MathService) into the text box and press OK.

After a short interval, you should see details of the service contract appear in the pane on the
left in the WTF Test Client application window.

	 Chapter 19  Writing a service by using Windows Communication Foundation    365

8.	 Double-click one of the operations—for example, Square. The pane on the right side shows
you details of how to call the operation. Enter a number in the Value field and press Invoke.
After a short pause, you should see the response appear in the lower part of the pane, as
shown in the following figure:

Accessing a service by using a proxy
You have seen how to connect to a service manually by using the WCF APIs. It is also possible to get
Visual Studio to create a proxy class for you, one that encapsulates the details of where the service is
and what the endpoints are; in this way, you don’t have to be concerned with the low-level mechanics.

This is often the way that you would do it in C# and Microsoft Visual Basic .NET, asking Visual Stu-
dio to add a service reference to your project, and then using the generated proxy class. The problem
is that this feature isn’t supported by C++/CLI in Visual Studio, but it turns out to be quite simple to do
if you use a C# wrapper.

Creating the wrapper DLL
In this next exercise, you will create a simple C# Dynamic-Link Library (DLL) project and add a refer-
ence to the MathService project. This will add a proxy class to the project, but because it is a public
class, you will be able to use it from C++/CLI code. And even though you create a C# project, you
don’t have to write a single line of C# in order to make it work.

366   Microsoft Visual C++/CLI Step by Step

1.	 Continue with the project (MathService) from the previous exercise.

2.	 Create a C# Class Library project named WcfClientLib.

3.	 Add a reference to MathService. In Solution Explorer, under the project, right-click References,
and then, on the shortcut menu, click Add Service Reference.

4.	 In the Add Service Reference dialog box that opens, type the URL of the service into the ad-
dress box and press Go. After a few seconds, you should see the MathService added to the
Services pane. You can expand this entry and click on IMathService to see the operations in
the pane on the right.

Observe the Namespace name at the lower left, which by default is ServiceReference1: the
generated code will be placed in this namespace. You can change it if you want, but you’ll
need to remember it for subsequent steps.

5.	 When you’re happy that you have a reference to the appropriate service, press OK and Visual
Studio will generate a proxy class and application configuration file for you.

6.	 You don’t need to add anything else to this project, so just build it to create the DLL.

Using the wrapper
You now have a DLL that contains all the code necessary to call MathService. In the second part of the
exercise, you’ll see how to use this DLL in a C++/CLI application.

1.	 Create a CLR Console Application project named TestWcf.

	 Chapter 19  Writing a service by using Windows Communication Foundation    367

2.	 Add an external reference to System::ServiceModel.

3.	 Add a second external reference to the WcfClientLib DLL, which you’ll find in the WcfClientLib/
bin.debug directory.

4.	 Add a using directive for the namespace WcfClientLib.ServiceReference1.

using namespace WcfClientLib::ServiceReference1;

If you changed the namespace for the generated proxy code, edit the using directive
appropriately.

5.	 The proxy class is driven by configuration information, so add an application configuration file
to the project. Right-click the project name, and then, on the shortcut menu, click to Add New
Item.

6.	 In the dialog box that opens, in the Utility section, click Configuration file (app.config).

Note  You need to edit the project properties so that the app.config file is properly
processed at build time. Open the project properties and then, under Configuration
Properties, click Post-Build Event, and specify the following command line:

copy app.config "$(TargetPath).config"

7.	 The configuration details you need are in the DLL’s app.config file, so open that in the editor
and copy the <system.ServiceModel> element shown here:

<system.serviceModel>
 <bindings>
 <wsHttpBinding>
 <binding name="WSHttpBinding_IMathService" />
 </wsHttpBinding>
 </bindings>
 <client>
 <endpoint address="http://localhost:8080/MathService" binding="wsHttpBinding"
 bindingConfiguration="WSHttpBinding_IMathService"
 contract="ServiceReference1.IMathService"
 name="WSHttpBinding_IMathService">
 <identity>
 <userPrincipalName value="WIN8PREVIEW\Julian" />
 </identity>
 </endpoint>
 </client>
</system.serviceModel>

The entries in the configuration file give all the details that the proxy needs to contact the
service. Ensure that you replace the value of userPrincipalName with your details.

8.	 You are now ready to use the service. Add the following code to the main function:

try
{
 MathServiceClient ^msc = gcnew MathServiceClient();
 double result = msc->Cube(3.0);
 Console::WriteLine("Result: {0}", result);
}
catch(Exception ^ex)
{
 Console::WriteLine(ex->Message);
}

The proxy class is called MathServiceClient, based on the name of the service with “Client” ap-
pended. This class directly implements the operations exposed by the service, so you can just
call the Square and Cube functions without even having to know that it is a service.

9.	 Ensure that the service is still running and then build and run the client. You should see the
result displayed on the console.

Quick reference

To Do This

Define a service interface. Define an interface and annotate it with [ServiceContract].
Annotate the methods on the interface with
[OperationContract].

Create a service. Create a class that implements the service interface.

Host a service. Create a ServiceHost object

Creating a service client Create a ChannelFactory and use it to create a channel.
Then, call methods on the channel.

Expose metadata from a service. Add the Service Metadata behavior to your service.

Test A WCF service. Use the the WCF Test Client.

Accessing a service using a proxy class. Create a C# DLL project, and add a reference to the ser-
vice using the Add Service Reference dialog.

		 369

C H A P T E R 2 0

Introducing Windows Store apps

After completing this chapter, you will be able to:

■■ Explain essential features of the Windows Store user interface.

■■ Create user interfaces by using XAML.

■■ Create, deploy, and run a simple Windows Store app.

■■ Describe the essential features of C++/CX.

The release of Windows 8 has presented developers with new opportunities and challenges, en-
abling them to write applications that make full use of the capabilities of mobile devices, includ-

ing touch screens and cameras. This chapter introduces you to the world of writing Windows Store
applications for the new Windows 8 environment.

A (brief) history of writing Windows user interface
applications

The way in which Windows user interface (UI) applications have been written has evolved over the
years, from the earliest applications written in C, through a move to C++, then Microsoft .NET, and
now Windows 8. This section gives you a brief overview and history and also provides information to
help you decide which technology you should consider using for a UI application.

The Win32 API
The earliest Windows UI applications were usually written in C by using the Win32 API. This was an
exacting task, somewhat equivalent to writing code in assembly language. There was a tremendous
amount of boilerplate code needed to do almost anything, and you had to know just what was going
on because there was no higher-level library taking care of the housekeeping for you.

For example, the simple task of creating a window on the screen entailed calling a function that
took no fewer than 12 parameters, as demonstrated here:

HWND WINAPI CreateWindowEx(
 DWORD dwExStyle, LPCTSTR lpClassName, LPCTSTR lpWindowName,
 DWORD dwStyle, int x, int y, int nWidth, int nHeight,
 HWND hWndParent, HMENU hMenu,
 HINSTANCE hInstance, LPVOID lpParam);

370   Microsoft Visual C++/CLI Step by Step

You can probably guess what some of the parameters mean (x and y are the initial position of the
window, and nWidth and nHeight specify its size), but there are some obscure parameters and types
here.

Creating applications by using the Win32 API often means copying an existing application to get
all the boilerplate startup and housekeeping code, and then editing the business logic parts.

Microsoft Foundation Classes
Microsoft’s first C++ user interface library was Microsoft Foundation Classes (MFC), initially released in
1992 and now at version 10. MFC provides a thin C++ wrapper around the Window APIs, but it does
perform most of the tedious housekeeping for you.

MFC made it possible to create applications that looked like Microsoft Office and Windows Ex-
plorer, and which could interoperate with Office applications by using a complex technology called
Object Linking and Embedding (OLE). MFC 9 introduced a number of new features including support
for docking windows similar to those found in Microsoft Visual Studio, and a ribbon toolbar similar to
that used in Microsoft Office.

MFC has been deprecated in favor of .NET, but there are many applications that still use it. Ver-
sions 7 through 9 were designed to help developers migrate to .NET, and so it is regarded as a legacy
framework.

One drawback for MFC developers is that MFC has never had a UI designer in Visual Studio, al-
though there are editors for icons, bitmaps, and other resources.

Windows Forms
The first versions of .NET introduced a new UI library called Windows Forms (or WinForms), which was
modeled on the Microsoft Visual Basic way of creating UIs, and (as the name implies) it was targeted
at producing form-based applications. Because it was a .NET library, you could write Windows Forms
applications in any .NET language.

Windows Forms applications can have multiple windows, menus and toolbars, dialogs, and all the
other features that you would expect in a desktop Windows application.

A Windows Forms application consists of one or more windows called forms, and you typically
develop it by dragging controls from a toolbox onto a form and then using the Properties editor to
set control properties and event handlers. Windows Forms was the first time that C++ developers had
a visual designer for creating UIs.

Note  Although you’d usually use the designer in Visual Studio to create Windows Forms
applications, Microsoft designed it so that you could create the entire UI in code if you
wanted to, and compile from the command line.

	 Chapter 20  Introducing Windows Store apps    371

A form and its child controls are represented by objects in code, and the Visual Studio designer
creates the code that will generate the desired layout at run time. Note that Visual Studio 2012 does
not support Windows Forms for C++/CLI. It is possible that support might be added back in a later
version, but for the time being if you want to use WinForms, you will need to use Visual Studio 2010.

Windows Presentation Foundation
Version 3.0 of the .NET Framework saw the release of Windows Presentation Foundation (WPF, code-
named “Avalon”), which was intended to build on the success of Windows Forms as well as add extra
functionality. Microsoft Silverlight is a subset of WPF for writing components to embed in webpages,
and which provide the same kind of functionality as Adobe Flash.

Although you can use it to design form-based applications, WPF is very different from Windows
Forms. Here are some of the main differences:

■■ WPF uses DirectX rather than the older GDI graphics subsystem, which makes for much faster
rendering and offers the ability to use hardware graphics acceleration when available.

■■ WPF uses XAML, an XML language, to describe UI layout. This makes it possible to almost
completely separate the presentation and logic parts of an application.

■■ WPF supports many advanced features that do not appear in Windows Forms, including rich
support for media (vector and raster images, audio, and video), animation, bitmap effects such
as drop shadows, and advanced text rendering.

■■ WPF’s support for data-binding is far more powerful and extensible compared to Windows
Forms.

WPF can have a steep learning curve because it is intended as a professional graphics library with
which developers can create any UI they want rather than a library that makes it easy to perform
common tasks and build simple business applications.

Unfortunately, WPF isn’t easy to use from C++/CLI, because the language lacks support for partial
classes, and this feature is essential if you are to work with XAML. I’m not entirely certain why this
wasn’t added—it would certainly be possible—but it seems that Microsoft decided that it didn’t want
C++/CLI used for modern front-end development. Whatever the reason, there has never been a C++/
CLI designer for WPF in Visual Studio, and so there is no “WPF Application” project type.

Windows 8 and Windows Store
Although Windows 8 fully supports the familiar Windows desktop environment, it also provides a new
way of writing UI applications. Windows Store apps use a library called Windows RT (or WinRT) which
provides a UI library that is aimed at touch devices and the style of interface made popular by the
iPad and other tablets. It is called Windows Store because it is envisaged that developers will create
applications and sell them online through Microsoft’s Windows Store, in common with the way that
many other mobile platforms make content available.

372   Microsoft Visual C++/CLI Step by Step

Windows Store applications are very different to traditional Windows applications; they require
a different approach to development, as you will see in this and Chapter 21, “More about Windows
Store apps.”

So, Windows 8 supports two different styles of UI application: desktop and Windows Store. Note
that they are completely separate. Among other things, this means that a Windows Store app won’t
appear on the desktop and needs to run in the WinRT environment.

Which UI library to choose?
So, which UI library should you choose for your applications? For most developers, the choice will
come down to Windows Forms, WPF, or Windows Store.

At this point, Win32 and MFC are really legacy technologies, and there are few times when you
would consider starting a new project using either of them (although MFC does have some support
for interacting with Office that the newer libraries don’t have)

If your application is going to have a traditional form-based UI, consisting mainly of text boxes and
buttons, and doesn’t need fancy graphics, animation, or media file support, Windows Forms will be
suitable. You will find everything you need in Visual Studio, including a visual designer.

If you want a desktop application but with the advanced features that WPF provides, that is the
way to go, although if you are using C++, you will have to jump through quite a few hoops to get
there.

And, if you want an up-to-date, tablet-style interface that will suit touch devices as well as desktop
computers, consider Windows Store. Oh, and don’t let anyone tell you that Windows Store replaces
WPF; they are designed for different types of application. I can’t see anyone producing a Windows
Store-style version of Visual Studio any time soon!

Introducing Windows Store apps

The Windows Store UI brings a completely new style of user interface to Windows applications. Many
of the ways in which UIs have been constructed since the first versions of Windows are no longer
supported. For example, in the Windows Store UI, there are no menus or dialog boxes, so how do you
let users make choices? And then there are all the new modes of interaction supported by handheld
devices, such as accelerometers and cameras that users will expect to use.

This means that you need to get used to new ways of writing applications. Of course, if you’re new
to writing Windows UI applications, you will in some ways have an easier task because you have less
to unlearn.

If you read about development with WinRT, you will hear talk of the “green and blue stacks.” This
phrase arose from how Microsoft described how WinRT was going to fit with the existing Windows
development technologies, and they produced a diagram similar to the following illustration:

	 Chapter 20  Introducing Windows Store apps    373

The area on the left, in green in the original diagram, is the new WinRT technology stack, whereas
the area on the right (originally in blue) shows existing technologies. This does mean that developing
for Windows 8 now has two distinct models, depending on the stack that you choose.

You will notice that .NET is placed in the older, blue section, but you will find that it is still relevant
to writing Windows Store apps.

Main features of Windows Store apps
In this section, I’ll list some of the major features of Windows Store apps. If you think of an app run-
ning on a typical tablet device or mobile phone, then you should be able to appreciate why these
have been introduced.

App behavior
Apps are secure and sandboxed, and can’t wreck other applications. If users are going to download
apps from an online store, they need to be confident that a new one won’t affect what they already
have installed. Downloading and installing apps is made simpler by using single-folder installation.

One consequence of sandboxing is that some APIs are not available, such as sockets and file I/O.

Apps load quickly, with none of the waiting common to desktop applications. In fact, you don’t
start and stop apps like you do their cousins on the desktop. After you run an app it stays in memory
but is suspended if you switch away from it, so you can switch back to it instantly. Suspended apps
can be terminated if resources are needed; thus, apps need to handle moving to and from the back-
ground and termination gracefully.

Microsoft is setting up a Windows Store for Windows 8 applications, similar to the App Store
used on Apple devices. In common with most of these stores, apps must be approved before being
accepted, and developers need to obtain a license to be able to create apps. You will see how to do
this when you create your first app, later in the chapter. And if you’re going to distribute your apps
through the Windows Store, they will also need to be signed with a digital signature because anony-
mous applications aren’t allowed.

374   Microsoft Visual C++/CLI Step by Step

Hardware usage
The WinRT APIs make it possible for developers to take advantage of hardware features such as mo-
tion sensors and cameras, and apps can adapt to the hardware context, such as scaling to suit screen
resolution or using the mouse and keyboard when touch input is not available.

The UI model
The WinRT UI model is intended for use with touch devices that have a limited display area, so there
are some restrictions and unique aspects that you need to keep in mind:

■■ Apps do not support overlapping windows. An app can, however, have more than one win-
dow, and you can move from window to window as you would in a browser.

■■ Continuing the browser analogy, there are no menus or dialogs.

■■ Tiles are used to represent programs on the desktop. Unlike icons, tiles are active and can dis-
play content (such as weather or a stock report). By doing so, they can turn the desktop into a
dashboard.

Two types of UI are supported. Code-based interfaces can be written in C#, C++, or Visual Basic;
the UI is usually constructed declaratively by using XAML, although it is possible to create the UI
manually in code. Web-based interfaces are written in JavaScript and constructed by using HTML5
and CSS3.

Contracts and charms
Windows 8 apps can work together using contracts, which express capabilities (such as search or copy
and paste) in a language-independent way.

Charms are UI elements that invoke contracts, and every app has access to five standard charms.

The WinRT APIs
API calls can be direct or brokered. Brokered calls are those that might have security concerns, such as
those that affect data or user settings or use device features. They must be declared by the app, and
might need permission from the user in order to run.

WinRT places a premium on app response. Part of this is achieved by suspending apps and letting
you resume them quickly. In addition, any API call that might take more than 50 milliseconds is imple-
mented as an asynchronous call so that developers are forced to adopt a responsive coding style.

Writing a Windows Store app

Most people will write Windows Store apps in one of three ways:

1.	 Using C# or Visual Basic .NET and a subset of the .NET Framework libraries

	 Chapter 20  Introducing Windows Store apps    375

2.	 Using JavaScript and HTML5

3.	 Using C++

We are obviously going to be concentrating on the third option.

Note  When writing .NET applications, all languages are equivalent because they all com-
pile down to Microsoft Intermediate Language (MSIL, or IL for short). In fact, you could say
that to a very large extent, the language that you choose reflects the syntax you prefer. This
is not the case when writing Windows Store apps, for which there are very real differences
in the three aforementioned approaches. There is some functionality available in JavaScript
that isn’t available in C# or C++, and vice versa, but the main difference is that if you want
to use any Win32 and COM libraries you can only do it from C++. This means that to use
DirectX to write games, you will need to use C++.

Creating your first Windows Store app
This exercise shows you how to write the simplest of Windows Store apps, which in this case consists
of a single screen and two controls. In Chapter 21, you see how to add more functionality, but this will
show you the basics. Remember that to create and run Windows Store apps, you need to have Visual
Studio 2012 installed on Windows 8. Be aware that you might also be prompted to get a developer
license when you create your first project. For more information about developer licenses, read the
sidebar at end of this exercise.

1.	 In Visual Studio 2012, open the New Project dialog box.

2.	 In the pane on the left, click Windows Store.

3.	 In the center pane, click Blank App (XAML), and then name the project HelloXaml.

4.	 In the Solution Explorer, open MainPage.xaml.

The designer loads (which can take a few seconds), and you then see a screen with a visual
representation of the UI in the upper half, and the XAML in the lower half. The UI has a black
background because of the default theme that is used for applications.

The XAML is simply an XML document consisting of a Page element that represents the entire
page, and which contains a Grid element that will contain the content for the page.

Note  You will learn about XAML in more detail later in the chapter. For now, let’s
just note that a Page can only contain one content item, and this will usually be
some sort of layout control such as a Grid. As you’d expect, a Grid can contain mul-
tiple items laid out in rows and columns.

376   Microsoft Visual C++/CLI Step by Step

5.	 On the left side of the Visual Studio window, click the Toolbox tab to display the Toolbox. If
the tab isn’t visible, on the View menu, click Toolbox or press Ctrl+W, X to display it.

6.	 Drag a button from the Toolbox to the page.

A button appears, while at the same time a Button element is added to the XAML. You can
drag the button around to position it wherever you like, and you can also resize it; the But-
ton’s properties in the XAML are updated to reflect any changes you make. In fact, the upper
pane is simply a graphical interpretation of the XAML, so conversely, if you edit the XAML, the
upper pane will update itself accordingly.

Note  The Grid control can lay components out using rows and columns, but this
example is using absolute positioning. The Margin property determines how much
space is left on all four sides of a component, in the order left-top-right-bottom. By
specifying the first two, you are effectively defining the position of the button.

7.	 In the XAML pane, edit the Button’s Content attribute to something more suitable, such as
“Click Me!”

Note  You can provide the content to a control such as a button in two ways, either
by using the Content attribute or by providing it as the content of the element, such
as in the following example:

<Button Content="First One" ... />
<Button>Second One</Button>

In this example, which style you use is up to you, but if the content is going to be
something other than text (such as another XAML element), you’ll need to use the
second form.

8.	 Drag a TextBlock from the Toolbox to the page, position it next to the button, and adjust its
size because the default is rather small.

You might also want to adjust the font size for the TextBlock as well, because the default might
be too small when running on a desktop computer. You’ll find the font settings under the Text
section in the Properties window.

9.	 To work with the TextBlock in code, you need to give it a name. Ensure that the Properties
window is visible by selecting Properties Window from the View menu or typing Ctrl+W, P.

Now, select the TextBlock; you should see that the Name field at the top of the Properties win-
dow displays <No Name>. Enter a suitable name such as TxtHello and press Enter. The XAML
updates with an x:Name attribute, as shown in the following figure:

	 Chapter 20  Introducing Windows Store apps    377

10.	 You now want the TextBlock to be updated when you press the button. To do this, you need to
add a handler for the Button’s click event. In the designer pane, click the Button, and then, in
the Properties window, click the small lightning-bolt button at the upper right.

This displays all the events that the Button can raise. In this case you just want to handle the
click event, so double-click inside the text box, next to Click. This adds a handler with a default
name to the Page class, which looks like this:

void HelloXaml::MainPage::Button_Click_1(Platform::Object^ sender,
 Windows::UI::Xaml::RoutedEventArgs^ e)
{

}

You’ll learn more about event handling in Chapter 21, but you don’t need much detail for
now, because you aren’t going to use either of the arguments.

11.	 To change the text in the TextBlock, add this line of code to the handler:

TxtHello->Text = "Hello, XAML!";

The name that you gave the TextBlock is used as the name for the object that represents it in
code. Any UI element that you want to interact with in code has to have a name; you didn’t
give a name to the Button because you aren’t interacting with it in code, only clicking it in the
UI at run time.

12.	 On the Build menu, click Build Solution to build the app and ensure that you have no errors.

378   Microsoft Visual C++/CLI Step by Step

13.	 Run the app in the normal way, using Ctrl+F5.

Windows Store apps run full screen, so you’ll see the entire screen taken up with your app’s
UI, as depicted in the screen shot that follows. Press the button and check that the TextBlock
updates.

Note  Windows Store apps work differently than traditional Windows applications. Running
a Windows Store app doesn’t just start it, it also adds it to the Start screen as an installed
application.

If you’re new to Windows 8 apps, you might be wondering how you get back to Visual Studio after
you’ve performed testing. Moving the mouse to the lower-left corner of the screen displays the Start
icon, which you can use to get back to the Start screen. When you get there, you’ll notice that your
app has been added to the list of available applications on the right of the page, although it doesn’t
look exciting because we haven’t defined any content for the tile yet.

If you click the tile you’ll be back at your app’s UI, and you will probably find that the TextBlock still
shows “Hello, XAML!” This is because apps stay active after they’re started. I say “probably” because
apps can be terminated if there is pressure on resources, in which case it would be restarted if you
clicked it again.

If you decide that you don’t want the app to appear on the Start screen, right-click its tile and then,
on the shortcut menu that appears, click Unpin From Start. Even if an application isn’t on the Start
screen, you can always execute it by using the All Apps charm on the command bar.

	 Chapter 20  Introducing Windows Store apps    379

Developer licenses
When you create a Windows Store project, you might be prompted to obtain a developer
license. This is needed to create Windows Store apps. It lets you install and test apps on your
development computer and then submit them to the Windows Store when you’re ready to
show your code to the world. You can find out more details on developer licenses and how to
obtain them at http://msdn.microsoft.com/en-us/library/windows/apps/hh974578.aspx.

Be aware that if you sign in by using a Microsoft Account (formerly Microsoft Live ID), you
will be issued a license that needs to be renewed every 30 days. If you create a Windows Store
account, you can get a 90-day developer license.

Examining the project
When you create a Windows 8 app in Visual Studio, a lot of files are created. It is useful to know
something about what they are, and in particular, which ones you can edit and which you should
leave alone.

The following files are those that you can edit:

■■ XAML files  App.xaml for the application; MainPage.xaml for the default page. Each page of
the application has its own XAML file, whereas App.xaml holds code and XAML that repre-
sents the application itself.

■■ Code-behind files  A .h and .cpp file for each XAML file; for example, App.xaml.h and App.
xaml.cpp.

■■ The manifest file: Package.appxmanifest  This contains metadata describing the applica-
tion. You can double-click this to open it in the Manifest Designer.

■■ The Assets folder  This contains Portable Network Graphics (PNG) files containing default
images for the application. You can replace these with your own images to customize the ap-
pearance of your application.

■■ Precompiled headers: pch.h and pch.cpp  You can add your own headers to pch.h,
whereas pch.cpp is there simply to include pch.h.

Note  Precompiled headers are a feature of many C++ compilers. A lot of code is included
in header files, and in a typical application the same header files can be compiled for each
source file. Many of these header files will never change, and so precompiled headers let
the compiler process these once, and then reference the compiled version. Different com-
pilers (and even different versions of Microsoft C++) use their own ways of handling pre-
compiled headers, but for Windows Store apps any header files that are included in pch.h
will be precompiled.

http://msdn.microsoft.com/en-us/library/windows/apps/hh974578.aspx

380   Microsoft Visual C++/CLI Step by Step

There are also a number of files that you shouldn’t touch. XAML applications make heavy use of
partial classes, and the .g.cpp and .g.h files represent the parts of classes that are generated by Visual
Studio:

■■ App.g.h and App.g.cpp  The main function and XAML loading code.

■■ StandardStyles.xaml  Predefined styles and templates. You can derive from these, but don’t
change them.

■■ MainPage.g.h and MainPage.g.cpp  Generated partial class definitions for the default
page. Another pair of .g.h and .g.cpp files are added for every page you add to the
application.

■■ XamlTypeInfo.g.h  Type information generated by the XAML editor.

Introducing XAML

Although you can do a lot by just using the drag-and-drop functionality in Visual Studio and letting it
generate the XAML for you, understanding how XAML works will make you a much more productive
developer, and you’ll also find that there are some things that you can only do by editing the XAML
yourself. In this section, I introduce the concepts behind XAML and its grammar.

What is XAML?
XAML (Extensible Application Markup Language) is used in Windows RT and WPF to describe user
interfaces. The idea behind XAML is that you create the user interface declaratively in XML, and the
compiler then generates the code to create the UI at run time.

Note  Although XAML is mainly used for creating UIs, it provides a general way to describe
the relationships and properties of objects; thus, it is also used to describe workflows within
Windows Workflow Foundation.

There are three ways by which you can create UIs:

■■ Create the UI completely in XAML. The markup language includes features such as data-bind-
ing and triggers, which makes it possible for you to create sophisticated UIs without writing
any code.

■■ Create the layout in XAML, with event handling code providing the logic behind the UI. This is
the most commonly used approach, the default approach taken by Visual Studio, and the one
that we use here.

■■ Create the UI completely in code, with no XAML. This is not the recommended approach, but
it can be useful for complex and dynamic UIs.

	 Chapter 20  Introducing Windows Store apps    381

XAML has a number of features that are especially useful for constructing UIs.

Using XAML for declarative UI layout separates the UI’s look and feel. This way, you can specify the
name of a button’s click event handler without having to know in which language it is going to be
implemented. This also makes it easy to separate the UI design and business logic implementation,
making it possible for designers to work on the XAML without having to be concerned with the code.

XAML’s event handling lets you link control events to handler functions in code, but you can also
make event links in XAML itself. For example, you can have a label display the text of whichever item
you select in a list box or for the font size of a label to be determined by the position of a slider. This
means that for many simple interactions between controls, you don’t need to write any code at all.

Using Control templates, you can define layout and visual behavior templates that can then be
applied to controls across one or more applications. When combined with CSS-like styles and triggers
that can change styles when events occur, you have a powerful way to create unique and responsive
UIs. Template and style details can be defined as resources in XAML, which means that they can be
reused easily. If placed in resource dictionaries, resources can be reused across projects.

Finally, data-binding is one of the most powerful features of XAML, making it possible for you to
bind properties on objects to data that can come from a variety of sources. I have already mentioned
one example, where the font size property of a control can be bound to the position of a slider. You
can also bind to collections of objects, so that a list box can display an array of items, or you can bind
to data retrieved from a data source.

XAML syntax
In XAML, an object is represented by an XML element, and the object’s properties are defined by at-
tributes. For example:

<Button Content="Click!" Click="Button_Click"/>

This element represents a Button object. It also sets its Content property and the name of the func-
tion used to handle the click event. It is easy to use custom classes from XAML, provided the runtime
can locate the assembly containing the object code.

Relationships between objects are shown by nesting elements. For example, a ListBox can have a
number of ListBoxItems, as demonstrated in the following:

<ListBox>
 <ListBoxItem>Item 1</ListBoxItem>
 <ListBoxItem>Item 2</ListBoxItem>
</ListBox>

If you want to interact with a control from code, it must have a name, and you do this using the
x:Name attribute, as shown in this example:

<TextBlock x:Name="txtHello" ... />

382   Microsoft Visual C++/CLI Step by Step

The x: prefix indicates that this is the XAML Name attribute, because a control could have its own
Name attribute. The prefix will be defined in one of the parent elements of the TextBlock, as shown
here:

<Page
 ...
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" />

 <Grid ... >
 <TextBlock x:Name="TxtHello" ... />
 </Grid>
</Page>

In a Windows RT application, each page of a UI is represented by an object of a class derived from
Page. The definition of this class is in a code-behind file, and the link between the XAML and the class
is provided by the x:Class attribute:

<Page
 x:Class="HelloXaml.MainPage" ... >

XAML also makes use of markup extensions, which are attribute values enclosed in curly brackets,
like this:

<Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">

This syntax informs XAML that the attribute value isn’t simply text; it is normally used to create or
manipulate objects.

XAML controls
A XAML UI is made up of controls. Everything is a control, from the top-level window to the image
displayed on a button. Here’s an important principle: XAML UIs are constructed by nesting controls
within one another, and there is only one control at the top level, which will be a container such as a
Window or Page.

We can divide controls into two broad types: content controls (which can only contain one item)
and items controls (which can contain more than one).

Note  There are a number of commonly used controls that don’t belong to these two
groups (such as the Calendar and DatePicker) but for the purposes of explaining XAML, for
the moment, I’ll keep it simple.

A content control can only contain one other item as its content; for instance, a Button can display
a piece of text or an image, but this can be an items control. As an example, a Button can contain a
StackPanel which holds both an image and some text, as shown in the following illustration:

	 Chapter 20  Introducing Windows Store apps    383

Here is the XAML to create that button:

<Button HorizontalAlignment="Left" Margin="352,258,0,0"
 VerticalAlignment="Top" Height="120" Width="127">
 <StackPanel Orientation="Vertical">
 <TextBlock Text="Button" HorizontalAlignment="Center" />
 <Image Source="Assets/SmallLogo.png" Height="48" Width="75" />
 </StackPanel>
</Button>

You can see how the Button contains one item—a StackPanel—which contains a TextBlock and an
Image stacked atop one another.

Tip  Keep in mind that textboxes aren’t content controls, because they don’t contain text or
other controls as content; they implement their own UI that is used for input.

A selection of the most common content controls is shown in the following table:

Control Description

AppBar A container control that holds UI elements for commands
and navigation

Border Provides a border, background, or both around another
control

Button A standard Windows button. There are several other
types of buttons, such as radio buttons, that look differ-
ent but work in the same way.

CheckBox A control that a user can select (check) or deselect
(uncheck)

ScrollViewerl A scrollable area that can contain other elements.

Tooltip A tooltip associated with another control.

A selection of the most common items controls is shown in the following table:

384   Microsoft Visual C++/CLI Step by Step

Control Description

ComboBox A control that contains a drop-down list of items.

FlipView A control that displays one item at a time, making it pos-
sible for users to “flip” between them.

GridView A control that displays its items in a grid.

ListBox A list box that contains a collection of ListBoxItems.

ListView A control that shows a vertical list of items.

Layout controls
There is a special group of items controls that are used for UI layout. This group inherits from the
Panel class. In both Windows Store and WPF applications, special controls are used to determine the
layout of UI elements within a window or page. For instance, a Page might contain a Grid that will lay
controls out in rows and columns, or a StackPanel that will create a vertical stack of elements. Separat-
ing out the container and layout functions affords greater freedom to UI designers because it is easy
to create custom layouts if required. In this section, you’ll look at a few of the most common layout
controls.

The StackPanel is the simplest layout control. It arranges its child controls into a stack, either verti-
cally or horizontally depending on the value of the Orientation property. The following image shows
three buttons in a vertical StackPanel:

The XAML for this layout is very simple:

<StackPanel Background="{StaticResource ApplicationPageBackgroundThemeBrush}"
 Orientation="Vertical">
 <Button Content="First" FontSize="24" />
 <Button Content="Second" FontSize="24" />
 <Button Content="Third" FontSize="24" />
</StackPanel>

Because no other properties have been specified for the StackPanel, the panel fills all the available
space, and its child controls are left-justified. Here are the same controls with the Orientation changed
to Horizontal:

	 Chapter 20  Introducing Windows Store apps    385

The StackPanel still fills all the available space, but this time, it lays out its children horizontally. By
default, the child controls are centered vertically.

If you have so many items in a StackPanel that they aren’t all visible at one time, you won’t see the
controls that fall outside the bounds of the StackPanel, but all of the objects will still be created. The
VirtualizingStackPanel manages this efficiently by only creating child controls when they’re visible.

The Grid is one of the most commonly used layouts. Items are arranged by row and column, and
cells can have different sizes. You can specify the number of rows and columns as well as which cell
a child control should occupy. The illustration that follows displays how three buttons look when
displayed in a Grid.

386   Microsoft Visual C++/CLI Step by Step

The XAML for this layout shows some interesting features.

<Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}" >
 <Grid.RowDefinitions>
 <RowDefinition Height="60*" />
 <RowDefinition Height="40*"/>
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="60*" />
 <ColumnDefinition Width="40*" />
 </Grid.ColumnDefinitions>
 <Button Content="First" FontSize="24" Background="Blue" Grid.Row="0"
 HorizontalAlignment="Center"/>
 <Button Content="Second" FontSize="24" Background="Green" Grid.Row="1"
 HorizontalAlignment="Center"/>
 <Button Content="Third" FontSize="24" Background="Red" Grid.Column="1" Grid.Row="1"
 HorizontalAlignment="Center"/>
</Grid>

You can see how RowDefinition and ColumnDefinition elements are used to define the rows and
columns in the grid. There are several ways to define the width and height, such as by using percent-
ages or absolute values. In this case, the asterisk (*) denotes a proportion, so the widths of the two
columns are distributed proportionally in the ratio 60:40. Like the StackPanel, there is no size specified
for the Grid itself, so it fills all the available space. The other important concept shown by this example
is the way in which the row and column values are specified for the buttons. This is done by using at-
tached properties, which are explained in more detail in the sidebar that follows.

	 Chapter 20  Introducing Windows Store apps    387

Attached properties
Attached properties are an interesting feature of XAML. They are used for several purposes, but
the one that you will encounter most is letting a child element specify a value for a property
that actually belongs to the parent. For example, the Grid.Column property that the buttons are
using in the previous example is referring to the Column property on the Grid.

Suppose that you have the following definition in the XAML:

<Button x:Name="btn1" Grid.Row="1" .../>

In code, this will be rendered something like this:

Grid.SetRow(btn1, 1);

You are informing the Grid that btn1 is going to be in row 1, but it looks like you’re setting a
property on the Button itself.

The VariableSizedWrapGrid is a variant on the Grid. It also lays items out in rows and columns but
will automatically wrap items to the next row or column as necessary. This is obviously useful when
the viewing area size changes, such as when switching your tablet from landscape to portrait mode.
The following image shows five Button controls in a VariableSizedWrapGrid:

The XAML looks like this:

<VariableSizedWrapGrid Background="{StaticResource ApplicationPageBackgroundThemeBrush}"
 MaximumRowsOrColumns="3" Orientation="Horizontal" ItemWidth="150">
 <Button Content="First" FontSize="24" Background="Blue" HorizontalAlignment="Center"/>
 <Button Content="Second" FontSize="24" Background="Green" HorizontalAlignment="Center"/>
 <Button Content="Third" FontSize="24" Background="Red" HorizontalAlignment="Center"/>
 <Button Content="Fourth" FontSize="24" Background="Cyan" HorizontalAlignment="Center"/>
 <Button Content="Fifth" FontSize="24" Background="Magenta" HorizontalAlignment="Center"/>
</VariableSizedWrapGrid>

The horizontal orientation shows that this control will lay its children out in rows, and the Maxim-
umRowsOrColums says that it will wrap at three items. To achieve a nice layout, each grid cell is 150
wide, and the buttons are centered within their cells. If you decide that you want a layout that looks
more like the Windows 8 Start screen, you could change the XAML to the following:

<VariableSizedWrapGrid Background="{StaticResource ApplicationPageBackgroundThemeBrush}"
 MaximumRowsOrColumns="3" Orientation="Horizontal" ItemWidth="150" ItemHeight="150" >
 <Button Content="First" FontSize="24" Background="Blue" HorizontalAlignment="Stretch"
 VerticalAlignment="Stretch"/>
 <Button Content="Second" FontSize="24" Background="Green" HorizontalAlignment="Stretch"
 VerticalAlignment="Stretch"/>

388   Microsoft Visual C++/CLI Step by Step

 <Button Content="Third" FontSize="24" Background="Red" HorizontalAlignment="Stretch"
 VerticalAlignment="Stretch"/>
 <Button Content="Fourth" FontSize="24" Background="Cyan" HorizontalAlignment="Stretch"
 VerticalAlignment="Stretch"/>
 <Button Content="Fifth" FontSize="24" Background="Magenta" HorizontalAlignment="Stretch"
 VerticalAlignment="Stretch"/>
</VariableSizedWrapGrid>

The difference is that both height and width have been set, and the horizontal and vertical align-
ments have been set to Stretch, so that the items will fill their respective cells. You can clearly see the
difference in the following image:

The last layout control we’ll consider is the Canvas. With this control, you can specify absolute
positions for its children, but it isn’t used as often as the others because it doesn’t adapt automatically
to changing display conditions. Here is an example of some Buttons laid out on a Canvas:

Here’s the XAML for the layout:

<Canvas Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <Button Content="First" FontSize="24" Canvas.Left="100" Canvas.Top="100" Background="Blue"/>
 <Button Content="Second" FontSize="24" Canvas.Left="150" Canvas.Top="150"
 Background="Green"/>
 <Button Content="Third" FontSize="24" Canvas.Left="180" Canvas.Top="180" Background="Red" />
</Canvas>

You can see that the positions of the Buttons are given by the Canvas.Left and Canvas.Top attached
properties. The objects are displayed in the order in which they are declared, resulting in the third
Button overlapping the second. If you want to specify the ordering explicitly, you can use the ZIndex
property to determine the order in which elements will be rendered.

	 Chapter 20  Introducing Windows Store apps    389

Event handling
When creating a UI in XAML, you use attributes on controls to link events to event handling functions,
such as in the following example:

<Button Content="Click!" Click="Button_Click"/>

Here, the Button’s click event is being handled by a function called Button_Click in the associated
code-behind file. Recall the example of an event handler function in the HelloXaml that you saw
earlier:

void HelloXaml::MainPage::Button_Click_1(Platform::Object^ sender,
 Windows::UI::Xaml::RoutedEventArgs^ e)

Every event handler has the same signature: the return type is void, the first argument is a handle
to the object that raised the event, and the second is a handle to an object, of type RoutedEventArgs
or one of its subclasses, which might hold information about the event. For example, handlers for key-
board events will be sent a KeyRoutedEventArgs object whose Key property indicates which key was
pressed. In the case of simple click-type notifications, there is no other information, so you can ignore
this argument.

Note  Visual Studio will generate a handler for you, whose name is based on the control
and event names, as in the previous example, but this is simply a convention, and you are
free to use any name you like for event handlers.

The word “routed” in RoutedEventArgs refers to the fact that events can be routed to more than
one control. Consider the example you saw earlier in the chapter, in which a Button’s content consist-
ed of a StackPanel containing an Image and a TextBlock. If you click the Image, you’re actually clicking
an Image on top of a StackPanel on top of a Button, and you probably want to handle this event in
the Button’s click handler. The event is first passed to the Image. Then, it’s passed to its parent (the
StackPanel), and so on, bubbling up the tree until it either reaches the top or someone says they’ve
handled it.

C++/CX and Windows RT

Writing Windows Store apps exposes you to yet another variety of C++, known as C++/CX (Compo-
nent Extensions).

You might well wonder (as I have myself on more than one occasion) why Microsoft needed to cre-
ate yet another set of extensions to C++ when they had only recently introduced C++/CLI.

The main reason for this is that Windows Store apps do not use managed code; thus, they do not
make use of the CLR. When you write a Windows Store app, it compiles down to native code rather
than IL, so C++/CLI is not appropriate.

390   Microsoft Visual C++/CLI Step by Step

This means that you could write Windows Store apps in standard, unmanaged C++, but you’d have
to provide a lot of housekeeping code to work with the underlying Component Object Model (COM)-
based infrastructure. For this reason, Microsoft decided to add some extensions to C++ to handle
these housekeeping tasks, in particular managing object lifetimes.

Note  If you don’t want to use the C++/CX extensions, you can still write WinRT apps in C++
by using a library called Windows Runtime Library (WRL). This can be useful if you want to
access low-level features not exposed by C++/CX, but it is more complex to use and beyond
the scope of this book.

Unlike C++/CLI, C++/CX does not support garbage collection. This means that objects won’t move
around in memory, and so interop with unmanaged code is easier, and you can easily mix C++/CX
and native C++ types.

You might also wonder where C++/CLI and .NET fit into the new world of Windows RT applications.
It turns out that C++/CX applications can use a subset of the .NET APIs, and there is a client profile
provided in Visual Studio so that you can code against this subset. This makes it possible for .NET
developers to write Windows RT applications by using familiar APIs.

Windows RT
Windows RT is a new runtime on top of the Windows kernel. It doesn’t use Win32: It is completely
new. It covers the same functionality as Win32 (which was introduced in 1993!) but is object-oriented
and written in C++.

The WinRT APIs contain a subset of the Win32 and COM APIs. You can use WinRT APIs from several
languages, and language bindings are now called projections. There are currently three projections
available: native (for C++), JavaScript, and .NET (for C# and VB.NET).

Metadata
All WinRT objects support reflection through metadata, so they can be used from dynamic languages
such as JavaScript. WinRT uses the same metadata format as the CLR, which makes it easier and faster
to use WinRT APIs from .NET without having to use P/Invoke.

WinRT code compiles down to native code, which has no facility for including metadata. For this
reason, the metadata for WinRT code resides in separate files with a .winmd extension. These are
CLI assemblies containing only metadata, so you can inspect them by using the IL disassembler tool
(ISDASM).

C++/CX syntax
C++/CX is a lightweight set of extensions to C++, so there isn’t too much to cover in this section. To
create an object, use the ref new keyword, as demonstrated in the following:

	 Chapter 20  Introducing Windows Store apps    391

MyClass ^mc = ref new MyClass();

The caret (̂) is the same symbol used for managed handles in C++/CLI, but these are different
because they are pointing to unmanaged code. We need a handle here rather than a pointer because
C++/CX objects are reference counted.

Observe the use of ref new to create objects. This is an example of a compound keyword, formed
of two separate tokens, and is not simply new with a ref modifier.

Reference counting
The COM mechanism that underlies WinRT uses a system of reference counting to manage
object lifetimes. Each time client code obtains a handle to an object, the object increments
its reference count. When the client has finished with the object, it needs to decrement the
reference count. When the count reaches zero, the object knows that no one has a reference to
it anymore, and so it can destroy itself. In the past, it was up to developers to ensure that refer-
ence counts were maintained correctly, and this was a common source of error. The Windows
Runtime now manages this for you, so you no longer need to be concerned about object
lifetimes.

Classes
You create run-time classes by using the ref keyword, as you do with C++/CLI.

public ref class MyClass
{
};

If a class is going to contain WinRT components, it must be declared as a ref class.

C++/CX also introduces the concept of partial classes, by which a class can be split into more than
one part and combined by the compiler. This is necessary to support XAML, in which the GUI designer
in Visual Studio generates code to represent a page. The developer then creates the second half of
the class to add UI logic.

Note  The lack of support for partial classes in C++/CLI is one of the reasons why it is not
simple to create WPF applications in that language by using Visual Studio.

Here’s how you might use a partial class. In the following example, one part is declared by using
the partial keyword and placed in its own header file:

// MyClass.private.h
#pragma once
partial ref class MyClass // use the 'partial' keyword
{
private:

392   Microsoft Visual C++/CLI Step by Step

 int _implementationDetail;
};

The second part of the class is placed in another header file that includes the first one.

// MyClass.h
#pragma once
#include "MyClass.private.h"

ref class MyClass // don't use the 'partial' keyword here
{
public:
 int GetDetail();
};

Anyone wishing to use the class will include MyClass.h, but the interesting point is that anyone
implementing the public part of the class doesn’t have to see or know any details about the private
part.

When Visual Studio creates the code for a XAML user interface, it generates .h and .cpp files. You
will find that the .h file (for example, MyPage.h) includes another header (MyPage.g.h). The .g.h file is
the partial class generated by the designer containing the private part of the page definition, whereas
the .h file is the public part that you can edit. As you might expect, there is also a .g.cpp file, which
contains the implementation of the functionality defined in the .g.h file.

Generics
C++/CX supports run-time generics, just like those you’ve met in C++/CLI.

generic <typename T>
public ref class List
{
 property T item;
 ...
};

The generic keyword introduces a generic type, and the typename in angle brackets shows that T is
the type parameter which is used in the body of the class.

Strings
Whereas in C++/CLI code you use a System::String to represent strings, in C++/CX you use a
Platform::String. Both types of string provide the same basic functionality, and both are immutable.

You create a string like this:

String ^s = "First string";

Or, you can create one like this:

wchar_t *txt = L"Second string";
String ^s2 = ref new Platform::String(txt);

	 Chapter 20  Introducing Windows Store apps    393

In this example, wchar_t is the standard C++ wide character type, and a string literal is used to
construct a String object. This example shows how C++/CX is an extension to standard C++ and can
use the same data types.

To extract the underlying data from a String, use the Data function, as illustrated here:

const wchar_t *txt = s->Data();

Common namespaces
When building Windows Store apps you will find yourself working with a number of new namespaces.
This final section summarizes the names and purposes of the main ones you need to know about.

The Windows namespaces
The Windows namespaces contain the APIs needed to build Windows Store apps. There are over 100
namespaces in all. The following table lists some those that are the most commonly used:

Namespace Description

The Windows::ApplicationModel namespaces Provide access to core run-time functionality and run-
time information

The Windows::Data namespaces Provide functionality for working with HTML, JSON and
XML

The Windows::Devices namespaces Enable applications to work with device capabilities such
as cameras and geolocation

The Windows::Foundation namespaces Contain fundamental Windows Runtime functionality

Windows::Foundation::Collections Contains generic and specialized collection classes

The Windows::Globalization namespaces Provide support for locale dependent features such as
calendars and number formats

The Windows::Graphics namespaces Provide support for image display and printing

The Windows::Management namespaces Contain functionality for managing applications

The Windows::Media namespaces Provide classes for creating and working with media such
as photos, audio and video recordings

The Windows::Networking namespaces Provide support for networking

The Windows::Security namespaces Provide support for authentication and cryptography

The Windows::Storage namespaces Provide functionality to work with files, folders and
streams

The Windows::System namespaces Provide system-level functions, including application
launching, threading, and managing user profiles

The Windows::UI namespaces Contain the core UI functionality, including input and
notifications

The Windows::UI::XAML namespaces Contain the classes, interfaces and enumerations neces-
sary for working with XAML

The Windows::Web namespaces Provide access to and help manage web resources, in-
cluding RSS or Atom syndication feeds

394   Microsoft Visual C++/CLI Step by Step

The Platform namespaces
The Platform namespaces define a number of types that help you work with the Windows Store run-
time. The following table lists the ones you might use in your code:

Namespace Description

Platform Contains built-in types that are compatible with the
Windows Runtime

Platform::Collections Provides implementations of the types defined in the
Windows::Foundation::Collections namespace

Platform::Metadata Contains attributes that modify type declarations

The Platform namespace defines a number of useful types:

■■ An Object base type

■■ Exception classes

■■ 1D array types

■■ A String class

The Platform::Collections namespace contains implementations of the following collection types
that are defined in the Windows::Foundation::Collections namespace:

■■ Map, a modifiable collection of key/value pairs accessed by key, analogous to (and creatable
from) std::map

■■ MapView, a read-only collection of key/value pairs accessed by key

■■ Vector, a modifiable sequence of elements, analogous to (and creatable from) std::vector

■■ VectorView, a read-only sequence of elements

The namespace also contains iterators to work with the collections, such as VectorIterator and
VectorViewIterator.

Note  The concrete collections can’t be passed between components written in different
languages, such as from C++ to C#. When you need to accept or return a collection, use the
corresponding interface type such as Windows::Foundation::Collections::IVector.

The Platform::Metadata namespace defines two attributes that can be used to annotate types:

■■ The DefaultAttribute is used to mark the preferred alternative among a collection of over-
loaded functions.

■■ The FlagsAttribute declares an enumeration that uses bit fields.

	 Chapter 20  Introducing Windows Store apps    395

Quick reference

To Do This

Create a single-page Windows Store app. In the New Project dialog box, in the pane on the left,
click Windows Store. Then, in the center pane, select the
Blank App (XAML) project type.

Add controls to the page. Drag controls from the Toolbox to the page, or edit the
XAML directly.

Handle events from controls. Double-click the control to add a handler for the default
event. To add handlers for other events, use the event list
in the Property editor.

Lay out elements in a row, horizontally or vertically. Use a StackPanel container with the Orientation set
appropriately.

Lay out elements in a grid Use a Grid container.

		 397

C H A P T E R 2 1

More about Windows Store apps

After completing this chapter, you will be able to:

■■ Create a more complex app by using XAML and code-behind.

■■ Handle events from a more complex user interface.

■■ Use Windows Store app features, such as app bars.

■■ Share content with other applications.

In this chapter you will create a more complex Windows Store app, one that uses a touch interface,
and which can be deployed onto any Microsoft Surface tablet device. As well as showing you how to

create a realistic Windows 8 app, you will also learn about some of the new features that the Windows
Store interface has added to Windows programming.

Building the basic calculator

The app you’ll be building during the course of this chapter is a programmer’s calculator. This will
offer the features of a normal calculator, such as arithmetic operations and being able to save values
in memory, but it will also add some functions that are often useful to programmers. There is a lot
that could be added, but we’re going to limit the additions to the ability to work in different number
bases (decimal, hexadecimal, and binary). In addition, programmer’s calculators often work only with
integers because they are used to manipulate addresses, so that’s what we’ll do here. The screen shot
that follows shows how the finished app will appear.

398   Microsoft Visual C++/CLI Step by Step

As you design and code this app, you will see how apps with a graphical UI like this are often not
that complex in what they’re doing, but you need to expend some effort to ensure that the UI works
in the correct way. For example, if the user has selected binary mode, only the “0” and “1” number
keys should be enabled. When he switches to hexadecimal, the keys “0” through “9” and “A” through
“E” should be enabled.

Laying out the number buttons
Our UI is laid out in typical calculator style, with a TextBlock at the top to display the current value,
and below that, number keys laid out in a grid.

Note  There are a lot of features that you need to consider—and lots of ways of implement-
ing them—when designing a touch-based app for the Windows Store and the Microsoft
Surface tablet, and we can’t consider all of them without turning this chapter into a book.
That means that this app is going to be limited in several respects. First, it is only going to
be a single page app. Second, it is designed for use in landscape orientation only; the UI
does not adapt itself to portrait mode.

	 Chapter 21  More about Windows Store apps    399

Microsoft Blend for Microsoft Visual Studio
Visual Studio comes with a design tool called Blend for Visual Studio 2012, which provides
a more design-oriented environment for creating UIs, as opposed to Visual Studio’s code-
oriented approach. Blend takes a more visual approach to UI design than Visual Studio, which
makes it simpler to create styles and other graphical elements. The idea is that designers can
use Blend to create sophisticated layouts by using XAML and then pass them on to developers
who can add the logic in code.

In this first exercise, you will create a project with a single page, and lay out the number buttons
and text display.

1.	 Start Visual Studio 2012 and create a new “blank XAML” project named ProgCalc.

2.	 In the editor, open MainPage.xaml.

3.	 To create an area where the numbers you enter and the results of calculations are displayed,
drag a Border from the Toolbox to the main page, positioning it at the top with a left margin
of about 430 and a top margin of about 50. Use the handles to resize the area to approxi-
mately 90 units high by 730 units wide, set its BorderThickness property to 2, and then set
BorderBrush to Gray (or any other color you like).

The numbers you enter into the calculator are going to be displayed in a TextBlock, and it
would look good to give the TextBlock a border. The way you do this in XAML is not obvious:
you add a Border control to represent the border, and then place the TextBlock inside it.

4.	 Drag a TextBlock to the form and drop it into the Border; you should find that it expands to fill
the Border control. Add the x:Name attribute to give it a name so that you can interact with
it in the code: I’ve called it txtOutput. You should also remove the Text attribute from the
XAML and set its FontSize property to a suitable value such as 72.

Note  For this particular app, you actually don’t need to give the Border a name,
because you aren’t going to interact with it from code. Only those UI elements with
which you interact need to have a name.

400   Microsoft Visual C++/CLI Step by Step

The XAML should now look something like this:

<Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <Border BorderBrush="Gray" BorderThickness="2" HorizontalAlignment="Left"
 Height="89" Margin="432,48,0,0" VerticalAlignment="Top" Width="731">
 <TextBlock x:Name="txtOutput" TextWrapping="Wrap" FontSize="72"
 HorizontalAlignment="Left"/>
 </Border>
 ...
</Grid>

Don’t worry about the exact sizes and positions: Where the buttons are and how they look
isn’t important to the functioning of the app.

5.	 Drag buttons to the page to start building up the grid. The buttons display with a preset style,
but they are rather small for a calculator. I edited the properties to make them 100 wide by
108 high, and gave them a font size of 72. Ensure that you use the x:Name property to give
each button a descriptive name, such as btnOne. You should end up with a grid positioned
underneath the Border, and left aligned with it, similar to the following screen shot:

The XAML ought to look similar to the following:

<Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <Border BorderBrush="White" BorderThickness="2" HorizontalAlignment="Left"
 Height="100" Margin="431,50,0,0" VerticalAlignment="Top" Width="731">
 <TextBlock x:Name="txtOutput" TextWrapping="Wrap" FontSize="72"/>
 </Border>
 <Button x:Name="btnOne" Content="1" HorizontalAlignment="Left" Margin="431,167,0,0"
 VerticalAlignment="Top" Height="108" Width="100" FontSize="72"/>
 <Button x:Name="btnTwo" Content="2" HorizontalAlignment="Left" Margin="550,167,0,0"
 VerticalAlignment="Top" Height="108" Width="100" FontSize="72"/>
 <Button x:Name="btnThree" Content="3" HorizontalAlignment="Left" Margin="669,167,0,0"
 VerticalAlignment="Top" Height="108" Width="100" FontSize="72"/>

	 Chapter 21  More about Windows Store apps    401

 <Button x:Name="btnFour" Content="4" HorizontalAlignment="Left" Margin="431,294,0,0"
 VerticalAlignment="Top" Height="108" Width="100" FontSize="72"/>
 <Button x:Name="btnFive" Content="5" HorizontalAlignment="Left" Margin="550,294,0,0"
 VerticalAlignment="Top" Height="108" Width="100" FontSize="72"/>
 <Button x:Name="btnSix" Content="6" HorizontalAlignment="Left" Margin="669,294,0,0"
 VerticalAlignment="Top" Height="108" Width="100" FontSize="72"/>
 <Button x:Name="btnSeven" Content="7" HorizontalAlignment="Left" Margin="431,422,0,0"
 VerticalAlignment="Top" Height="108" Width="100" FontSize="72"/>
 <Button x:Name="btnEight" Content="8" HorizontalAlignment="Left" Margin="550,422,0,0"
 VerticalAlignment="Top" Height="108" Width="100" FontSize="72"/>
 <Button x:Name="btnNine" Content="9" HorizontalAlignment="Left" Margin="669,422,0,0"
 VerticalAlignment="Top" Height="108" Width="100" FontSize="72"/>
 <Button x:Name="btnClear" Content="C" HorizontalAlignment="Left" Margin="431,550,0,0"
 VerticalAlignment="Top" Height="108" Width="100" FontSize="72"/>
 <Button x:Name="btnZero" Content="0" HorizontalAlignment="Left" Margin="550,550,0,0"
 VerticalAlignment="Top" Height="108" Width="100" FontSize="72"/>
 <Button x:Name="btnEquals" Content="=" HorizontalAlignment="Left" Margin="669,550,0,0"
 VerticalAlignment="Top" Height="108" Width="100" FontSize="72"/>
</Grid>

6.	 Build and run the app to check that everything is OK. Start it by pressing Ctrl+F5 or, on the
Debug menu, click Start Without Debugging.

The app starts by showing a gray splash screen, and then shows the UI. If you move the mouse
around you will see that buttons highlight as you move over them, and you can also press
them, although nothing will happen at this point.

You can get back to the desktop in several ways: you can either go via the Start screen, use the
Alt+Tab key combination, or press Windows key+X to bring up a menu from which you can
select the desktop.

Handling number input
Now that you have a basic layout in place, you can add the logic behind the buttons. When the user
presses the number keys, you want to remember what they have pressed and build up the number.
The easiest way to handle this is to realize that you don’t need the actual number until you come to
perform an operation: until that point, it can exist as a string on the display. This means that handling
digit entry is very simple, as outlined in the following:

■■ Get the current string from the TextBlock

■■ Get the digit character represented by the number key

■■ Add the digit to the string

■■ Put the new string into the TextBlock

The following steps implement this logic in a handler:

1.	 Select one of the digit buttons in the XAML. Open the Properties editor by clicking the Prop-
erties tab at the side of the Visual Studio window and then click the lightning-bolt button at
the upper-right of the editor to display the events for the button.

402   Microsoft Visual C++/CLI Step by Step

Tip  If the Properties tab is not visible, you can open the Properties editor by select-
ing Properties Window from the View menu or pressing Ctrl+W and then P.

2.	 In the list of events, find the Click entry, which should be at the top. Type NumberButtons_
Click in the text box and press Enter.

This causes Visual Studio to create an empty event handler. Edit the handler so that it ends up
like this:

void ProgCalc::MainPage::NumberButtons_Click(Platform::Object^ sender,
 Windows::UI::Xaml::RoutedEventArgs^ e)
{
 Button ^btn = (Button^)sender;
 String ^digit = (String^)btn->Content;
 txtOutput->Text += digit;
}

You first need to cast the sender handle to a Button, so that you can use its Content property,
which holds the digit you want. You then need to cast the Content to a String. Buttons can have
all sorts of things as content, but in this case you know that it is a string, so the cast is safe.

3.	 Add the same handler to all 10 number buttons.

You can either do this by using the Property editor or by editing the XAML, adding a Click
attribute to the elements for each button. The advantage to doing it this way is that you can
cut and paste the text rather than having to type it in the editor.

4.	 Build and run the app.

You can click the number buttons to build up a number as a string in the TextBlock. And while
we’re thinking about the display, let’s add the logic for the Clear button. All this needs to do
for now is to clear the string in the display.

5.	 Select the Clear button in the XAML, open the Properties editor, and then display the event list.

6.	 Add a handler called ClearButton_Click to the Click event and then press Enter.

Visual Studio creates a new handler for you.

7.	 Implement the handler to clear the string in the display, like this:

void ProgCalc::MainPage::ClearButton_Click(Platform::Object^ sender,
 Windows::UI::Xaml::RoutedEventArgs^ e)
{
 txtOutput->Text = "";
}

8.	 Build and test the app.

You should now be able to enter numbers and clear the display.

	 Chapter 21  More about Windows Store apps    403

Adding arithmetic operations
Now that the numbers are displaying correctly, the next step is to add the buttons and logic for the
arithmetic operations. When the user presses one of the arithmetic operation buttons, it signals that
she has finished entering the first number. This means that you need to perform the following steps:

■■ Get the string from the display, convert it to a number, and then store it as the left operand

■■ Remember which operation was selected

■■ Clear the display and prepare it to accept the right operand

Adding the arithmetic buttons
The following exercise implements the aforementioned steps:

1.	 Edit the XAML to add four buttons for the basic arithmetic operations. I placed them in a ver-
tical column, along the right side of the numbers, as illustrated in the following screen shot:

Tip  An easy way to do this is to duplicate a line in the XAML, and then edit it ac-
cordingly. For example, I copied the “3” button, renamed it to btnPlus and changed
the Content to “+”. You can then select it and drag it to the right to position it cor-
rectly; the designer will show you when buttons are aligned correctly.

2.	 To differentiate the arithmetic buttons from the number keys, assign them a color.

You can do this by setting the Foreground property, either through the Property editor or by
editing the XAML directly. (I set my buttons to LightGreen.)

404   Microsoft Visual C++/CLI Step by Step

3.	 When you have added all four buttons, pick one and display its events in the Property editor.
Type ArithmeticButtons_Click as the handler name and then press Enter

Visual Studio adds an empty handler for you.

4.	 Edit the other three arithmetic operation buttons so that they use the same handler.

Getting the number
Now, you need to get the string from the TextBlock, convert it to an integer, and store it for later use.

1.	 Start by adding an integer member to the MainPage class in MainPage.xaml.h, remembering
to place it in the private section.

int leftOperand;

2.	 Add code to the handler to convert the text to an int and store it in the leftOperand.

void ProgCalc::MainPage::ArithmeticButtons_Click(Platform::Object^ sender,
 Windows::UI::Xaml::RoutedEventArgs^ e)
{
 String ^txt = txtOutput->Text;
 int val;
 swscanf_s(txt->Data(), L"%d", &val);
 leftOperand = val;
}

There are a number of ways to perform the string-to-int conversion, and the one I’ve used
here will simplify using other number bases later in the program. The swscanf_s function takes
a string and converts it according to a format. The first argument is the raw string, which you
can get from the String object by using its Data function. The second argument is the format
string. The leading L denotes a wide character (as opposed to an ASCII) string literal, and %d
alerts the function to expect a string that represents a decimal integer. Finally, the &val passes
the address of the variable where the result should be written.

Note  There are two versions of sswscanf: swscanf and swscanf_s. You should always use the
second of these because it does extra checking on its arguments and is less open to misuse,
either accidental or deliberate.

	 Chapter 21  More about Windows Store apps    405

Windows and strings
When you write code for Windows, you are going to find yourself wondering just how many
ways of representing characters and strings there can be. You are also going to find yourself
having to convert between different string formats, perhaps because a function that you want
to use employs a different representation than that of the one you’re using in your code, or
because a string object doesn’t support the functionality you want. The following table sum-
marizes some (but not all) of the ways of representing characters and strings that you might
encounter when working with C++ in Windows. In the Origin column, “S” stands for standard
C++, and “M” for Microsoft-specific.

Representation Description Origin

char, ‘a’ Single-byte character type and literal S

char*, “abc” Pointer to a single-byte character string,
and string literal

S

wchar_t, L’a’ Wide character type and literal (nor-
mally two bytes)

S

wchar_t*, L”abc” Pointer to a wide character string, and
string literal

S

string Single-byte string type S

wstring Wide string type S

Platform::String C++/CX string type that stores wide
characters

M

System::String C++/CLI string type that stores wide
characters

M

BSTR Component Object Model (COM) string
type

M

TCHAR Typedef for char or wchar_t, depend-
ing on platform, used in Win32
programming

M

LPTSTR Typedef for char* or wchar_t*, depend-
ing on platform

M

CString Microsoft Foundation Classes (MFC)
string type

M

In best object-oriented style, the character data inside string objects is private, but many
types give you a way to access it. For example, a Platform::String has a Data member function
which returns you a wchar_t* pointer to its data, whereas a standard C++ string has its c_str
member function.

You might also see mention of Unicode and MBCS when reading about strings in Windows
APIs. Unicode is the most widely used international standard for character representation, and
many implementations in programming languages use two bytes per character. MBCS, which
stands for Multi-Byte Character Set, was introduced by Microsoft. It uses a variable width
representation, with one byte being used for ASCII characters, two bytes for most non-ASCII,
and more where needed. The Windows API contains functions for converting between wide
characters and MBCS (for example, wcstombs and mbstowcs).

406   Microsoft Visual C++/CLI Step by Step

Remembering the operation
What’s the best way to remember which operation has been selected? The obvious solution is to use
a variable to store the operation, and the fact that we want to choose one of a small set of values
should suggest using an enum for this.

1.	 Open the MainPage.xaml.h file and add the declaration for an enum at the top, above the
MainPage class declaration but still within the namespace.

namespace ProgCalc
{
 enum class ArithOp
 {
 PLUS, MINUS, TIMES, DIVIDE, NONE
 };

 public ref class MainPage sealed
 {
 …
 };
}

The enum has one member for each operation, plus one to indicate that there is no operation.
The names follow convention by being in capitals.

2.	 Add a private member to the MainPage class to represent the current operation.

ArithOp currentOp;

3.	 Open the MainPage.xaml.cpp file and set the operation to NONE in the constructor, placing it
after the call to InitializeComponent.

MainPage::MainPage()
{
 InitializeComponent();

 currentOp = ArithOp::NONE;
}

4.	 You can now see which button was pressed. Edit the ArithmeticButtons_Click function to set
the operation accordingly, using a chain of if-else statements.

Button ^btn = (Button^)sender;
if (btn == btnPlus) currentOp = ArithOp::PLUS;
else if …

5.	 Clear the display by setting the Text property for the TextBlock to an empty string.

6.	 Build the app to verify that there are no errors.

You can’t see any result at this stage, but you can if you want run the app in the debugger,
setting a breakpoint in the arithmetic button handler to check that the conversion is working.

	 Chapter 21  More about Windows Store apps    407

Tip  Checking that your code works by using the debugger is recommended practice.
Writing output by using Console::WriteLine isn’t!

Performing calculations
You can now complete the basic functionality by implementing the logic behind the Equals button.
The operations you need to perform are as follows:

■■ Check that there is something to do. If there is no content in the TextBlock or no current
operation, return.

■■ Get the text from the display and convert it to a number.

■■ Perform the calculation, using the current operation.

■■ Echo the result to the display.

Adding the handler and getting the number
1.	 In MainPage.xaml, bring up the properties for the Equals button and add a handler called

EqualsButton_Click.

2.	 Add checks at the start of the handler to determine if there is anything to do.

if (currentOp == ArithOp::NONE) return;
if (txtOutput->Text->Length() == 0) return;

3.	 Get the string from the display and convert it to a number.

You’ll realize that you need to use the same code that you implemented in the arithmetic
button handler, but this would lead to duplication. As a rule, any time that you see duplicated
code, you should consider pulling it out into a separate function, a process called refactoring.

Open the MainPage.xaml.h file and add the prototype for a function called ConvertTextToInt,
placing it inside the namespace:

int ConvertTextToInt(Platform::String ^str);

Because this is a utility function and doesn’t need access to internal details of MainPage, this
doesn’t have to be a member of the MainPage class, although you can make it one if you like.

4.	 Add the implementation to the MainPage.xaml.cpp file, as shown in the following:

int ProgCalc::ConvertTextToInt(Platform::String ^str)
{
	 int val;
	 swscanf_s(str->Data(), L"%d", &val);
	 return val;
}

408   Microsoft Visual C++/CLI Step by Step

Note  There is nothing in the way of error checking here because we’re sure that the
only content of the string is digits, so conversion should not fail. This is reasonable
for a tutorial example such as this, but in a real app you’d want to check that the
user hadn’t entered a number too large to fit in an integer.

5.	 Replace the original code in the arithmetic button handler with a call to your new function,
like this:

leftOperand = ConvertTextToInt(txtOutput->Text);

6.	 Build the app and confirm that it still works as expected.

Performing the arithmetic operation
At last you can add the code to EqualsButton_Click to perform the operation.

1.	 Start by declaring the following two variables, one to hold the number currently in the
TextBlock, and another to hold the result:

int rightOperand = 0;
int result = 0;

2.	 Store the content of the TextBlock in the rightOperand variable.

rightOperand = ConvertTextToInt(txtOutput->Text);

3.	 Add a switch statement that branches based on the operation.

switch(currentOp) {
case ArithOp::PLUS:
 result = leftOperand + rightOperand;
 break;
...
}

4.	 Addition, subtraction, and multiplication are simple, but you need to guard against dividing
by zero. If you find that you are about to this, display an error message and return.

case ArithOp::DIVIDE:
 if (rightOperand == 0) {
 txtOutput->Text = "Divide by zero";
 Reset();
 return;
 }
 result = leftOperand / rightOperand;
 break;

Observe the call to Reset. If you get a divide by zero, you can’t continue; you want to abandon
the calculation and reset everything. But, because this can involve several operations, it makes
sense to put it in a separate function.

	 Chapter 21  More about Windows Store apps    409

5.	 Add the following declaration of the private Reset function to the MainPage class in
MainPage.xaml.h, along with a Boolean member called clearOnNextKey:

void Reset();
bool clearOnNextKey;

6.	 Add the definition to the source file, as demonstrated here:

void ProgCalc::MainPage::Reset()
{
 currentOp = ArithOp::NONE;
 leftOperand = 0;
 clearOnNextKey = true;
}

The function clears the operation and saved left operand. The clearOnNextKey variable helps
with controlling the UI. At present, the TextBlock is cleared when you press an operator key,
ready for you to enter a new number. What we want to do in this case is to leave the message
on the display and not clear it until the user taps a number key.

7.	 Add the following code to the start of NumberButtons_Click:

if (clearOnNextKey == true) {
 txtOutput->Text = "";
 clearOnNextKey = false;
}

If the flag is set, the TextBlock will be cleared before proceeding.

8.	 After you’ve done that, you can complete the equals handler, turning the result into a string
and putting it back in the display.

Note  Development is often like this: you start implementing one piece of code and
find that there are things you need to do before proceeding. Sometimes it feels as
if you’re moving backward, finding that in order to do A, you need to do B, which
requires C, and so on. But, eventually you do get back to A again!

wchar_t buff[80];
swprintf(buff, 80, L"%d", result);
txtOutput->Text = ref new String(buff);

This code uses swprintf—which does the opposite to the swscanf_s function that you learned
about earlier—taking a value and converting it to a string in a given format. Unlike swscanf_s,
swprintf needs an array of wchar_t, which you need to convert to a Platform::String in order to
use it with the TextBlock.

410   Microsoft Visual C++/CLI Step by Step

Testing the calculator
Have you ever had a problem with a piece of software and found yourself thinking “didn’t anyone test
this before they released it?”

We have all experienced buggy software that doesn’t work properly or crashes, and it is very an-
noying when the problem is something basic that ought to have been caught during development.
To avoid inflicting the same frustration on your users, now that you have implemented the basic logic
for the calculator, you need to test what you’ve done before proceeding. This will ensure that you are
building on a solid foundation.

When testing, you should start by making a test plan. This doesn’t have to be anything complex or
grand, but designing a plan helps to avoid the problem of “testing by playing around,” when you test
what occurs to you at the time. If you do that, you run the risk of missing out some vital area because
it didn’t occur to you.

How do you decide what needs to be tested? Here are several areas that you need to consider:

■■ Does the basic functionality work as it should?

■■ Does the UI render the results correctly and legibly?

■■ Does the app handle mistakes and errors properly?

■■ Does the UI respond to error conditions correctly?

Many developers make the mistake of only testing the first category, not thinking about what mis-
takes the user could make, which means that surprises might be left in the code for users to find later.

A good place to start is by making a list of what you want to test. Don’t worry about thinking of
everything straight off; if another test occurs to you, add it to the list. A first obvious test is for addi-
tion: adding two numbers results in another number that represents their sum. If you test this with,
say, 1 + 2 and 3 + 3, there is no reason to suspect that other numbers will behave differently. The
same is true of the other arithmetic operators, so we can start with the following four tests:

■■ Addition of two numbers

■■ Subtraction of two numbers

■■ Multiplication of two numbers

■■ Division of two numbers

Two things immediately spring to mind when I look more closely at this list. A subtraction such as
5 – 8 will yield a negative number, so I need to test that this displays correctly. I also realize that I’ll
have to test for division by zero, so I’ll add that one. My list now looks like this:

	 Chapter 21  More about Windows Store apps    411

■■ Addition of two numbers

■■ Subtraction of two numbers

•	 Display of negative result from subtraction

■■ Multiplication of two numbers

■■ Division of two non-zero numbers

•	 Divide-by-zero results in correct error

Another thing occurs to me: getting zero involved in calculations is not just a special case for divi-
sion. Multiplying by zero results in zero, and adding or subtracting zero also has to be considered.
And so we now end up with the following:

■■ Addition of two numbers

•	 Addition of zero gives right answer

■■ Subtraction of two numbers

•	 Display of negative result from subtraction

•	 Subtraction of zero gives right answer

■■ Multiplication of two numbers

•	 Multiplication by zero gives zero

■■ Division of two non-zero numbers

•	 Divide-by-zero results in correct error

That will do for the basic operation of the calculator. Now, you need to think about the operation
of the user interface. Here are a few examples:

■■ Does the Clear button return the calculator to its starting point whenever it is pressed?

■■ What happens if the user keeps pressing the Equals button?

■■ Does Equals handle an empty display or no operation?

There are a number of other conditions that you could add, and you should ensure that you test as
many as you can before continuing.

412   Microsoft Visual C++/CLI Step by Step

Automating tests
To verify that you haven’t broken anything, and that your code still works as expected, you
should ideally run your tests every time you make a change to the code. It is obviously not ideal
to have to test your app manually each time, so good practice recommends automating the
testing of applications. For testing individual functions and classes, Visual Studio includes tools
with which you can create a suite of unit tests and run them with the click of a button.

It is slightly more complex to test UIs, but Windows RT provides ways to automate the
execution of your applications. Using them, you can write scripts to simulate pressing buttons
and then see what the state of the app is. Discussing how to do this is beyond the scope of this
book, but you can find more details on the Internet, including http://blogs.msdn.com/b/
windowsappdev/archive/2012/09/04/automating-the-testing-of-windows-8-apps.aspx.

Improving the graphics
When you run the app, you’ll see that it appears on the Start screen as a rather boring, gray square
with a white cross in the middle. This is the default image supplied for you, and any serious developer
is going to want to update that to something more eye-catching and useful. But first, let’s talk about
tiles. Anyone who has worked with a computer is completely familiar with icons—those little square
graphics that are used to represent and start applications. Windows 8 has taken the usefulness of
icons to a new level by introducing tiles.

By default, tiles are 150x150 pixels in size, but if the app needs to show more information, it can
use a wide tile that is 310x150 pixels.

Creating and using a tile
Double-click the Package.appxmanifest file to open the manifest editor. The manifest contains details
of the resources used by the app and is arranged on four tabs. The Application UI tab is the one in
which we’re interested. This is where you specify details of UI elements such as the tiles and splash
screen.

http://blogs.msdn.com/b/%20windowsappdev/archive/2012/09/04/automating-the-testing-of-windows-8-apps.aspx
http://blogs.msdn.com/b/%20windowsappdev/archive/2012/09/04/automating-the-testing-of-windows-8-apps.aspx

	 Chapter 21  More about Windows Store apps    413

If you’re going to submit your app to the Windows Store, you’ll need to provide several logos and
images. At a minimum you need to provide the following:

■■ The standard 150x150-pixel square logo

■■ The store logo (50x50 pixels), used to display your app in search listings in the Windows Store

■■ The small logo (30x30 pixels), used with your app’s display name in various places, such as in
search results and in lists of searchable apps.

■■ The splash screen (620x300 pixels) that displays while your app is starting up

Because you’re not going to submit this particular app to the Windows Store, you don’t need to
create all of these. But we will address two of them to make the calculator look a bit more realistic.

414   Microsoft Visual C++/CLI Step by Step

Note  The Manifest Editor has several entries for some of the logos under the heading
Scaled Assets. To get the best UI experience, Microsoft encourages designers to provide
properly scaled versions of the various image files because these will look much better than
scaling them programmatically.

There are two ways in which you can provide a logo: the first is to edit the default graphic created
for the project, and the second is to create another graphic and import it. To edit the logo, in Solution
Explorer, double-click the Logo.png file. This opens the file in the built-in graphics editor. I created the
logo shown in the following illustration by using a paint program; you can use any program you like,
provided you can produce an image that is 150x150 pixels and saved as a Portable Network Graphics
(PNG) file.

To use it to represent your app, copy it into the Assets folder for your app. Then, open the Manifest
Editor, and type the name of the file into the Logo box, as demonstrated in the following screen shot:

Observe the Background Color entry in the editor. Although you can use any image you want for a
tile, it is very common to use white graphics on a colored background, and to make the image back-
ground transparent. This makes it possible for users to change the background color of tiles, while still
maintaining a consistent look. Here’s how the app looks on the Start screen now:

	 Chapter 21  More about Windows Store apps    415

You can see that the custom logo appears alongside the tiles of other apps, and that the name of
the app has been added to the tile. You can control whether this name is displayed, because you likely
wouldn’t want it to if your logo includes the app name.

The splash screen is displayed while the app is starting up. It consists of an image 620x300 pixels
that is displayed on a colored background. Again, the image is often created with a transparent back-
ground so that users can change the Windows background color. After you have created an image of
the correct size, in the manifest Editor, in the pane on the left, click Splash Screen and then type the
name of the image file into the text box. Rebuild and run the app; you should see the splash screen
appear before the calculator interface opens.

Updates and badges
Although we don’t have the space here to delve into everything that you can do with tiles,
there are two features that are worth mentioning in passing.

The first is updating. In a more traditional operating system, program icons are normally
static. However, in Windows 8, Microsoft introduced the concept of Live tiles. With Live tiles,
not only can you tap them to start the app, just like ordinary desktop icons, but they can also
display “live” content when the app isn’t running. For example, the tile for a weather app could
display the current temperature and a weather symbol, or an email app could show how many
new messages have arrived. Programs can update their own tiles, but they are most useful
because they can be updated by background processes even when the app isn’t running. This
means that the Start screen is now a dynamic environment, with app tiles reflecting current
content.

The second item is badges. Badges are small icons that display notifications in the lower-
right corner of a tile, as shown in the following:

You pick a badge from a limited set of 11 symbols and the numbers from 0 to 99 (any num-
ber greater than 99 displays as “99+”). In the current version of Windows, you can’t define your
own badges. As with content, app badges can be updated by background processes.

416   Microsoft Visual C++/CLI Step by Step

Handling different number bases
One of the features that distinguish a programmer’s calculator is the ability to work in other number
bases. Addresses are often specified in hexadecimal (base 16, and less often nowadays in octal, base
8) and it might be useful to work in binary, as well.

So the next task is to add buttons with which the user can change the current number base, and
then implement the logic to make the display and arithmetic work correctly in different bases.

Hexadecimal and binary
Hexadecimal (or hex, for short) arithmetic counts by 16’s, which means that the hexadeci-
mal value “10” represents “16” in decimal; “11” represents “17”; and “20” is “32.” The letters A
through F are used to represent the extra digits that we need for the values between decimal
9 and decimal 15. The following table shows the correspondence between hexadecimal and
decimal values

Hexadecimal Decimal

9 9

A 10

B 11

C 12

D 13

E 14

F 15

10 16

11 17

19 25

1A 26

1E 30

1F 31

20 32

In code, you specify hexadecimal values with a leading “0X” (or “0x”) to differentiate them
from decimal values. Binary uses only the digits 0 and 1, and represents numbers as powers
of 2. The table that follows shows some powers of 2.

	 Chapter 21  More about Windows Store apps    417

Power of 2 Value

2^0 1

2^1 2

2^2 4

2^3 8

2^4 16

2^5 32

2^6 64

2 7̂ 128

2^8 256

You can represent any positive integer as a sum of powers of 2. For example, decimal “9” can
be expressed as 8 + 1, whereas decimal “31” can be written as 16 + 8 + 4 + 2 + 1. To represent
a number in binary, construct a string of 1’s and 0’s, with a 1 representing a power of 2 that you
are using. So “9” would be represented as “1001” (2^4, no 2^3 or 2 2̂, and 2^0), whereas “31”
would be “11111” (all the powers from 2^4 down to 2^0)

Adding the hexadecimal and base buttons
You need to add buttons to represent the three number bases that we’re going to use. You also need
to add another six buttons to represent the extra digits required by hexadecimal numbers. The fol-
lowing exercise shows you how to add and arrange the buttons to the UI.

1.	 Drag on the UI to select the 16 number and arithmetic operations. Move them down to leave
space for another row of buttons below the TextBlock.

2.	 Add a row of six buttons in the gap, making them the same size as the number buttons. These
represent the hexadecimal digits A through F, so give them the names btnHexA thru btnHexF.
You should end up with an arrangement similar to following:

Ensure that they use the same handler as the other number buttons.

418   Microsoft Visual C++/CLI Step by Step

3.	 Add three buttons next to the arithmetic operation keys and under the “E” key. Label them
“dec”, “hex”, and “bin”, from the top downward, and give them the names btnDecimal, btnHex
and btnBinary. You’ll need to decrease the font size for the text to fit on the buttons, and you
can change the color to make them stand out. Refer back to the first figure in this chapter to
see what the arrangement looks like.

4.	 You’ll need to a way to determine which base you’re using, so add a TextBlock to the right of
the main display. Give it a name (such as txtBase) and set its font size to about 24.

5.	 Open the Properties editor, and add a handler called BaseButtons_Click to all three buttons.

Changing the base
Adding the logic for changing the number base requires careful consideration. Here’s what you need
to do whenever the user clicks one of the base buttons:

■■ Set the base to the appropriate value: binary, decimal, or hexadecimal.

■■ Ensure that only the appropriate number buttons are enabled. In other words, when in binary
mode, only the “0” and “1” keys are enabled, in decimal mode “0” through “9” are enabled,
and in hexadecimal mode the “A” through “F” keys are available, as well.

■■ Convert the string in the display to appear in the correct form.

■■ Change the small TextBlock to display which base is being used.

The following exercise shows you how to implement this logic.

1.	 You need a way to store the base that has been chosen. Like the arithmetic operation, you are
choosing from a small set of values, so another enum is appropriate. Open MainPage.xaml.h
and add an enum within the namespace.

namespace ProgCalc
{
 enum class Base
 {
 DEC, HEX, BIN
 };
 ...
};

2.	 Add a data member to the MainPage class to hold the current base, and initialize it to decimal
in the Reset function.

// In MainPage.xaml.h
Base base;

	 Chapter 21  More about Windows Store apps    419

// In MainPage.xaml.cpp
void ProgCalc::MainPage::Reset()
{
 currentOp = ArithOp::NONE;
 base = Base::DEC;
 leftOperand = 0;
 clearOnNextKey = true;
}

3.	 Edit BaseButtons_Click and add the outline of the logic.

void ProgCalc::MainPage::BaseButtons_Click(Platform::Object^ sender,
 Windows::UI::Xaml::RoutedEventArgs^ e)
{
 // Get the button that was pressed
 Button ^btn = (Button^)sender;

 if (btn == btnDecimal)
 {
 // Enable the decimal buttons
 base = Base::DEC;
 txtBase->Text = "dec";
 }
 else if (btn == btnHex)
 {
 // Enable the hex buttons
 base = Base::HEX;
 txtBase->Text = "hex";
 }
 else if (btn == btnBinary)
 {
 // Enable the binary buttons
 base = Base::BIN;
 txtBase->Text = "bin";
 }
}

You can see how each of the cases sets the base variable and displays the current base in the
TextBlock. The comments about enabling buttons are there as placeholders, because this is
another example of code that is best provided as separate functions.

4.	 Add three new members to the MainPage class declaration in MainPage.xaml.h.

void EnableHexButtons(bool enable);
void EnableDecimalButtons(bool enable);
void EnableBinaryButtons();

Notice the slightly different form of the binary function. I’ve added the Boolean argument to
the decimal and hexadecimal functions to help avoid code duplication.

420   Microsoft Visual C++/CLI Step by Step

5.	 Implement the following functions in MainPage.xaml.cpp:

void ProgCalc::MainPage::EnableHexButtons(bool enable)
{
 btnHexA->IsEnabled = enable;
 btnHexB->IsEnabled = enable;
 btnHexC->IsEnabled = enable;
 btnHexD->IsEnabled = enable;
 btnHexE->IsEnabled = enable;
 btnHexF->IsEnabled = enable;
}

void ProgCalc::MainPage::EnableBinaryButtons()
{
 EnableHexButtons(false);
 EnableDecimalButtons(false);
 btnZero->IsEnabled = true;
 btnOne->IsEnabled = true;
}

void ProgCalc::MainPage::EnableDecimalButtons(bool enable)
{
 btnZero->IsEnabled = enable;
 btnOne->IsEnabled = enable;
 btnTwo->IsEnabled = enable;
 btnThree->IsEnabled = enable;
 btnFour->IsEnabled = enable;
 btnFive->IsEnabled = enable;
 btnSix->IsEnabled = enable;
 btnSeven->IsEnabled = enable;
 btnEight->IsEnabled = enable;
 btnNine->IsEnabled = enable;
}

The decimal and hexadecimal functions enable or disable the 0 through 9 and A through F
keys, respectively. The binary function only wants the 0 and 1 keys, so the easiest solution is to
disable everything and turn on the ones you want.

6.	 Call them from the base handler. For the binary case, just call EnableBinaryButtons. For the
decimal case, call EnableDecimalButtons(true) and EnableHexButtons(false), and for the hexa-
decimal case, call both the decimal and hex functions with true as the argument.

if (btn == btnDecimal)
{
 // Enable the decimal buttons
 EnableDecimalButtons(true);
 EnableHexButtons(false);
 base = Base::DEC;
 txtBase->Text = "dec";
}

	 Chapter 21  More about Windows Store apps    421

else if (btn == btnHex)
{
 // Enable the hex buttons
 EnableDecimalButtons(true);
 EnableHexButtons(true);
 base = Base::HEX;
 txtBase->Text = "hex";
}
else if (btn == btnBinary)
{
 // Enable the binary buttons
 EnableBinaryButtons();
 base = Base::BIN;
 txtBase->Text = "bin";
}

7.	 Add the default state to the Reset function so that it will be reset to decimal:

void ProgCalc::MainPage::Reset()
{
 currentOp = ArithOp::NONE;
 base = Base::DEC;
 txtBase->Text = "dec";
 leftOperand = 0;
 clearOnNextKey = true;
 EnableDecimalButtons(true);
 EnableHexButtons(false);
}

8.	 Call Reset from the OnNavigatedTo function, which means the page will initialize properly.

9.	 Build the app to ensure there are no coding errors.

Converting the string in the display
At this point, you can use the buttons to change the number base, but it isn’t affecting the value
shown on the display. You need to implement the base handler so that it works like this:

■■ Get the string from the display and convert it to a value, using the current number base

■■ Change the base, according to which button was pressed

■■ Convert the value to a string, using the new number base, and put it back in the display

The first step is to modify the ConvertTextToInt function that you wrote earlier so that it takes
account of the number base. Converting from decimal and hexadecimal strings can be done by
swscanf_s, but you need to do binary yourself.

422   Microsoft Visual C++/CLI Step by Step

1.	 Edit the ConvertTextToInt function so that it looks like the following example. Notice how it is
now a member of the MainPage class so that it has access to members of the class:

int ProgCalc::MainPage::ConvertTextToInt(Platform::String^ s)
{
 int n;

 if (base == Base::HEX)
 swscanf_s(s->Data(), L"%x", &n);
 else if (base == Base::DEC)
 swscanf_s(s->Data(), L"%d", &n);
 else if (base == Base::BIN)
 n = FromBinary(s->Data());

 return n;
}

The %x descriptor converts a hexadecimal string, and %d handles the decimal case. You will
provide your own function to deal with the binary conversion.

2.	 Add a prototype for the FromBinary function to MainPage.xaml.h. Because this is a utility
function and doesn’t need access to any members of the MainPage class, you don’t have to
make it a member.

unsigned long FromBinary(std::wstring s);

3.	 Add the implementation to the MainPage.xaml.cpp file

unsigned long ProgCalc::FromBinary(std::wstring s)
{
 wchar_t *stop;
 long l = wcstol(s.c_str(), &stop, 2);

 return l;
}

This function uses the wcstol (Wide Character String To Long) function for the conversion,
which will cope with input strings in binary. Here is where you see a good example of the
many string conversions that you might need to use in Windows programming: the Data
function gets a wstring out of the Platform::String, and the c_str function then gets a wchar_t*
that represents the content of the wstring.

Notice the second argument to the function. This returns a pointer to where the number
stopped in the string that you passed in. The idea is that the function will convert as much
of the string as it can to a number and then stop when it reaches a character it can’t handle;
it will then pass you back a pointer to that character, so you can pinpoint where parsing
stopped. Because we know that the entire string is valid, we don’t need to use that argument,
but we must still supply a variable.

	 Chapter 21  More about Windows Store apps    423

4.	 You now need to do the opposite conversion, taking a value and converting it to a string in
the correct format. Add a prototype for this function to the header file, such as shown in the
following:

Platform::String^ ConvertOutputString(int val);

5.	 Add an implementation of the ConvertOutputString function to the source code file.

Platform::String^ ProgCalc::MainPage::ConvertOutputString(int val)
{
 wchar_t buff[80];
 if (base == Base::HEX)
 swprintf(buff, 80, L"%x", val);
 else if (base == Base::DEC)
 swprintf(buff, 80, L"%d", val);
 else if (base == Base::BIN)
 {
 String ^bf = ToBinary(val);
 return bf;
 }
 return ref new String(buff);
}

You can see that the structure of this function now mirrors that of ConvertTextToInt. It also
uses another helper function called ToBinary to convert a value to a binary string.

6.	 Add the prototype for ToBinary to MainPage.xaml.h.

String^ ToBinary(int n);

7.	 Add the implementation to MainPage.xaml.cpp.

String^ ProgCalc::ToBinary(int n)
{
 String ^s = ref new String();

 do {
 s += (n & 1) ? L'1' : L'0';
 }
 while (n >>= 1);

 std::wstring result(s->Data());
 std::reverse(result.begin(), result.end());

 s = ref new String(result.c_str());
 return s;
}

This function gives you a chance to use the bitwise operators, which is not something you
have to do very often, so it is worth taking the opportunity to use them here. The do loop
examines the code, bit by bit, adding a “1” or “0” character to a string, depending on whether
the bit is set or not. The expression (n & 1) does a bitwise AND of the value and 1: Remember

424   Microsoft Visual C++/CLI Step by Step

that the AND takes two integer values for each bit position, returning 1 if (and only if) both
are set. Because “1” only has a single 1 in the lowest bit position, this is checking whether the
lowest bit is set.

The loop condition (n >>= 1) does a right-shift on the value by one position. This shifts all the
bits one place to the right, losing the rightmost bit, so that bit 2 becomes bit 1, and a zero is
introduced on the far left to fill in. After the loop has examined all the bits, the number will be
left as all zeros, so the loop will terminate.

At this point, however, the string is in the wrong order because the character representing the
lowest bit is the first, and the others have been added on. So, you need to reverse the string;
you could do this by using a loop, but the Standard Library has a useful reverse function, so
you can use that, instead.

Note  The way binary conversion is handled here is limited. In particular, because
binary representations are much longer than their decimal or hexadecimal equiva-
lent, it would be easy to generate a number that would overflow the space in the
TextBlock.

8.	 The final stage is to complete the logic for changing base and updating the display. Add code
to the start of the BaseButtons_Click handler to get the number from the display, as illustrated
here:

// Get the value from the display
int val = 0;

if (txtOutput->Text->Length() > 0)
 val = ConvertTextToInt(txtOutput->Text);

9.	 After changing the base, put the value back in the new format.

// Update the display
txtOutput->Text = ConvertOutputString(val);
clearOnNextKey = true;

Here is the complete handler, for reference:

void ProgCalc::MainPage::BaseButtons_Click(Platform::Object^ sender,
 Windows::UI::Xaml::RoutedEventArgs^ e)
{
 // Get the value from the display
 int val = 0;

 if (txtOutput->Text->Length() > 0)
 val = ConvertTextToInt(txtOutput->Text);

 // Get the button that was pressed
 Button ^btn = (Button^)sender;

	 Chapter 21  More about Windows Store apps    425

 if (btn == btnDecimal)
 {
 EnableDecimalButtons(true);
 EnableHexButtons(false);
 base = Base::DEC;
 txtBase->Text = "dec";
 }
 else if (btn == btnHex)
 {
 EnableDecimalButtons(true);
 EnableHexButtons(true);
 base = Base::HEX;
 txtBase->Text = "hex";
 }
 else if (btn == btnBinary)
 {
 EnableBinaryButtons();
 base = Base::BIN;
 txtBase->Text = "bin";
 }

 // Update the display
 txtOutput->Text = ConvertOutputString(val);
 clearOnNextKey = true;
}

10.	 Edit the EqualsButton_Click function so that the output will be converted to the right base.
Locate the lines at the end of the function that use swprintf and place the result into a buffer,
which should look like this:

wchar_t buff[80];
swprintf(buff, 80, L"%d", result);
txtOutput->Text = ref new String(buff);

Replace them with the following code:

txtOutput->Text = ConvertToOutputString(result);
clearOnNextKey = true;

11.	 Build and run the app, and test it thoroughly!

Using app bars
The Windows Store UI model doesn’t support menus or dialog boxes. The idea is that the design
should make it easy for the user to navigate his way through the app by using the controls on the
page rather than having to pull down menus and use dialog boxes, which could be awkward on a
touch device.

There are times, however, when users need to adjust settings or express preferences. For example,
in the weather app you might want to switch from Fahrenheit to Celsius, or vice versa. Having these
on the main UI would clutter things up, so there is a need for a way to expose these to the user, as
needed. Windows Store apps use app bars to present navigation, commands, and tools to users.

426   Microsoft Visual C++/CLI Step by Step

These are areas that appear when the user swipes from top or bottom of the screen (or by right-
clicking or typing Ctrl+Z). They are not intended to hold critical commands: the idea is that anything
critical (like the “take a picture” command for a camera app) ought to be in the main UI.

Applications can have two app bars: one at the top of the screen, which is typically used for
navigation, and one at the bottom, which is used for commands. In this section, you’ll add a bottom
app bar to the calculator, which will hold three buttons, giving you an alternative way to change the
number base. Here is what the app will look like with the app bar displayed:

Defining the button styles
The buttons on an app bar are usually round, and this is provided by a set of styles. Before adding the
app bar to your app, you need to edit the styles so that they will display correctly.

Styles
One of the secrets to designing great Windows Store apps is to use a coherent and consistent
visual style throughout. This is done in XAML through the liberal use of styles, which work in a
similar way to how CSS does in HTML. A developer or designer can define a style for buttons
that establishes the basic appearance, including colors, fonts, borders, and other properties.
This style can then be applied across the app, and a form of inheritance means that adjust-
ments can be made. Doing this makes it possible for styles to be shared across pages and even
across applications, and prevents duplication in the XAML. A Windows Store project comes with
a file called StandardStyles.xaml, which defines a base set of styles for Windows Store apps. You
should use these when you can so that your apps blend with the Windows Store look and feel.

	 Chapter 21  More about Windows Store apps    427

1.	 Open StandardStyles.xaml, and search for Standard AppBarButton Styles.

This is followed by a lot of commented out entries which define styles for various buttons.

2.	 Copy one of the style entries, remove the comments, and then edit it so that it looks like this:

<Style x:Key="HexAppBarButtonStyle" TargetType="ButtonBase"
 BasedOn="{StaticResource AppBarButtonStyle}">
 <Setter Property="AutomationProperties.AutomationId" Value="HexAppBarButton"/>
 <Setter Property="AutomationProperties.Name" Value="Hex"/>
 <Setter Property="Content" Value="h"/>
</Style>

This creates a style for the Hex button, which is based on the default AppBarButton style and
whose content is an “h”. The Name is the text that will be displayed below the button when it
appears on the app bar.

3.	 Repeat the previous step to create styles for the decimal and binary buttons.

<Style x:Key="DecAppBarButtonStyle" TargetType="ButtonBase"
 BasedOn="{StaticResource AppBarButtonStyle}">
 <Setter Property="AutomationProperties.AutomationId" Value="DecAppBarButton"/>
 <Setter Property="AutomationProperties.Name" Value="Dec"/>
 <Setter Property="Content" Value="d"/>
</Style>
<Style x:Key="BinAppBarButtonStyle" TargetType="ButtonBase"
 BasedOn="{StaticResource AppBarButtonStyle}">
 <Setter Property="AutomationProperties.AutomationId" Value="BinAppBarButton"/>
 <Setter Property="AutomationProperties.Name" Value="Bin"/>
 <Setter Property="Content" Value="b"/>
</Style>

4.	 Save the StandardStyles.xaml file.

Adding an app bar
Now that you have set up the styles for the three buttons, you can add the app bar.

1.	 Add this XAML to the bottom of the Page element, immediately after the end of the Grid:

<Page.BottomAppBar>
 <AppBar x:Name="bottomAppBar" Padding="10, 0 10, 0">
 <StackPanel Orientation="Horizontal" HorizontalAlignment="Left">
 <Button x:Name="btnAppBarDec" Style="{StaticResource DecAppBarButtonStyle}"
 Click="BaseButtons_Click"/>
 <Button x:Name="btnAppBarHex" Style="{StaticResource HexAppBarButtonStyle}"
 Click="BaseButtons_Click"/>
 <Button x:Name="btnAppBarBin" Style="{StaticResource BinAppBarButtonStyle}"
 Click="BaseButtons_Click"/>
 </StackPanel>
 </AppBar>
</Page.BottomAppBar>

428   Microsoft Visual C++/CLI Step by Step

The BottomAppBar element contains an AppBar, which in turn contains a StackPanel. A
StackPanel is a container that contains a stack of items, in this case arranged horizontally and
left-aligned. Like menus, it is a convention that commands on a bottom app bar should be
left-aligned, and any buttons for help should be right-aligned on the other side of AppBar.

Each button has the appropriate style set and is linked to the base buttons click handler.

2.	 Build and run the app. When the UI appears, right-click with the mouse or swipe upward from
the bottom of the screen. You should see the app bar appear. Click or touch anywhere else on
the screen (or swipe downward), and it will slide away.

Hooking it up
You now have an app bar that you can display and hide, but it doesn’t do anything. Fortunately, it’s a
simple matter to edit the base buttons handler so that it reacts properly to the app bar buttons.

1.	 Edit the code in the BaseButtons_Click function so that it accepts both the button on the
screen and the app bar buttons.

if (btn == btnHexBase || btn == btnAppBarHex)

2.	 Build and run the app.

You can now change the base by using the app bar.

Adding sharing
For the final task in this chapter, you’re going to add another feature to the calculator: the ability
to share data with other applications. This isn’t going to be very sophisticated, because you’re only
going to be able to share the value in the display, but it illustrates an important feature of Windows
Store apps.

Contracts and charms
Applications can communicate and share data by using contracts. Windows Store apps use contracts
to declare the interactions that they support with other applications.

These contracts are defined by Windows RT, and by using the Windows operating system as an
intermediary, apps can communicate without knowing anything about one another.

For example, choosing the Share charm while in an app will display all applications that have reg-
istered themselves as targets for sharing. This means that you can send data from your app to any of
the sharing targets without the two parties having prior knowledge of one another.

Windows 8 defines the following six contracts:

■■ Search  The app is search enabled.

	 Chapter 21  More about Windows Store apps    429

■■ Share  The app can share content with other applications or is ready to accept specific types
of data from other applications.

■■ Settings  Implements a standard way of defining app settings.

■■ Play To  The app can stream audio, video, and images to enabled devices.

■■ File Picker  The app is used as a location for saving and loading files.

■■ Cached File Updater  The app can track file updates and deliver the latest version to
the user.

Charms are a specific and consistent set of buttons that you can access in every app. The charms
are Search, Share, Connect, Settings, and Start. They appear on the right side of the screen when you
swipe inward from the right edge of the screen, move the mouse pointer to the upper-right or lower-
left of the screen, or press Windows key+C.

These buttons provide the following set of core actions that users frequently need:

■■ Search for content located in your app or in another app, and search your app’s content from
another app.

■■ Share content from your app with people or services.

■■ Go directly to the Start screen.

■■ Connect to devices and send content, stream media, and print.

■■ Configure the app.

As you can appreciate, implementing contracts and using the charms makes your app a full mem-
ber of the Windows Store community.

Implementing sharing
Sharing is one of the common contracts supported by apps, letting them share data with other apps
in a variety of formats, including the following:

■■ Plain text

■■ Formatted text

■■ HTML

■■ URIs

■■ Bitmaps

■■ Files

■■ Developer-defined data

430   Microsoft Visual C++/CLI Step by Step

When a request to share data is received, either programmatically or by a user selecting the Share
charm, your app receives an event. You implement an event handler in the normal way, which returns
the requested data to the caller.

When implementing sharing, you’ll need to use types from the Windows::ApplicationModel.Data
Transfer namespace. Depending on the types of data you are sharing, you might also want others,
such as Windows::Storage if you are using files.

The DataPackage class
The Windows::ApplicationModel.DataTransfer::DataPackage class is central to any data sharing
operation, and a DataPackage object contains the data that the app wants to share, along with a
description.

A sharing request comes with an empty DataPackage object. You retrieve it from the arguments
passed to the event handler, fill it in with data, and then send it back. If you only want to provide
data when the receiver requests it (as opposed to providing it at event handling time) you can add a
delegate to the DataPackage, which will be called when the receiver wants the data.

DataPackage has several useful properties, which can be accessed via DataPackage’s Properties
property, and which are summarized in the following table:

Name Mandatory? Description

ApplicationName No Gets or sets the name of the app that
provided this DataPackage

Description No Gets or sets the description for this
DataPackage

Thumbnail No Gets or sets the thumbnail image for
this DataPackage

Title Yes Gets or sets the title for this
DataPackage

When you choose to share data, the charms show details of the data that is going to be shared. At
a minimum, you must supply a title, but you can also add a description to help clarify exactly what is
being shared.

DataPackage also has several methods, which are used for populating the data. The following table
lists them:

Name Description

SetBitmap Sets the bitmap contained in the DataPackage

SetData Sets the custom data contained in the DataPackage

SetDataProvider Sets a delegate to handle requests from the target app

SetHtmlFormat Adds HTML content to the DataPackage

SetRtf Sets the RTF content contained in the DataPackage

	 Chapter 21  More about Windows Store apps    431

Name Description

SetStorageItems Sets the files and folders contained in the DataPackage

SetText Sets the text contained in the DataPackage

SetUri Sets the URI contained in the DataPackage

Handling share requests
This final exercise shows you how to implement sharing for the calculator:

1.	 At the top of the MainPage.xaml.cpp file, add the following using declaration for the
DataTransfer namespace:

using namespace Windows::ApplicationModel::DataTransfer;

2.	 Implement the handler that it going to be called when a sharing request arrives. Start by
adding a member to the MainPage class declaration in MainPage.xaml.h.

void ShareTextHandler(
 Windows::ApplicationModel::DataTransfer::DataTransferManager^ sender,
 Windows::ApplicationModel::DataTransfer::DataRequestedEventArgs^ e);

As usual with event handlers, the two arguments represent the source of the event and event
arguments. A DataTransferManager is an object that implements the sharing functionality
within an app; you will shortly create one of these for your app.

3.	 Add the implementation of the handler to MainPage.xaml.cpp. Start by getting the Data
Request object out of the event args—this is the object that is sent in reply to the request, and
you can obtain a DataPackage by using its Data member.

void ProgCalc::MainPage::ShareTextHandler(DataTransferManager^ sender,
 DataRequestedEventArgs^ e)
{
 DataRequest ^request = e->Request;
 DataPackage ^data = request->Data;

 // Now add the data you want to share.
}

4.	 You can now fill in the data that you want to share.

Any content must have at least two properties (a title and the content itself). What other
properties it has depends first on what you’re sharing, and second on how helpful you want
to be!

// Set the title and description
data->Properties->Title = "Calculator data";
data->Properties->Description = "A demonstration of sharing";
// Add the data
data->SetText(txtOutput->Text);

432   Microsoft Visual C++/CLI Step by Step

5.	 Set up the DataTransferManager so that sharing is active for the app. Start by adding a new
private member to the MainPage class, as shown here:

Windows::Foundation::EventRegistrationToken dataRequestedToken;

This object is returned to you when you register your event handler with the DataTransfer
Manager. It isn’t strictly necessary to include it here, because you only need it when imple-
menting a multipage app. In that case, you will implement the OnNavigatedFrom function,
which is called when you move to another page, and you’d use the token to tell the Data
TransferManager that you no longer want this page to receive share events. There is, however,
no harm in including it, and it will serve to remind you of what to do when you move on to
multipage applications.

6.	 Add the following code to the OnNavigatedTo function to register for share events, placing it
before the call to Reset:

DataTransferManager ^dataTransferManager = DataTransferManager::GetForCurrentView();

dataRequestedToken = dataTransferManager->DataRequested +=
 ref new TypedEventHandler<DataTransferManager^,
 DataRequestedEventArgs^>(this, &MainPage::ShareTextHandler);

Notice the rather compressed form of the second statement. You create a new TypedEvent
Handler, which uses generics to create a delegate that will call a handler function. You use the
angle brackets to specify the two argument types that the handler will use, and then provide
the function that the delegate will call: in this case, it is the ShareTextHandler function on “this”
object.

The delegate is hooked to the DataRequested event on the DataTransferManager, and this
returns the token that you can use to unregister when navigating away from the page.

7.	 Build and run the app and put a number in the display. Then, select the Share charm, which is
the second from the top.

After a few seconds initialization, you should see the title and description you provided, to-
gether with a list of the applications that can accept the data, as demonstrated in this screen
shot:

	 Chapter 21  More about Windows Store apps    433

You can see that the title for the data, along with a description if you supplied one, is shown
so that users can decide what they want to do with the data. On the system I’m using, only the
Mail app is able to accept shared text data.

Where next?
I’ve run out of space in this chapter, but now that you have seen how to build a more complex
Windows Store app, there are several ways in which you could enhance the calculator, building on
what you’ve learned. Here are some suggestions:

■■ Add the typical calculator “memory” functionality. The calculator keeps a memory variable,
and four buttons let you set it to zero (MC), add the currently displayed value to it (M+), sub-
tract the currently displayed value from it (M–), and put the stored value into the display (MR).

■■ Add a change sign button (+/–) that changes the sign of the value in the display.

■■ Implement some more programmer functionality, such as bitwise operations (AND, OR, XOR,
and NOT) and left and right shift.

■■ Add a history mechanism so that you can see what you’ve done up to now.

Quick reference

To Do This

Add an app bar to hold command buttons First create styles for the buttons in StandardStyles.
xaml. Add a BottomAppBar to the XAML. Then, add a
StackPanel containing the buttons, and link their click
events to a suitable handler.

Implement the sharing contract. Add a handler for a DataRequestedEvent and put the data
into a DataPackage. Then, use the DataTransferManager
to make sharing available for that page.

		 435

PART IV

Advanced topics

CHAPTER 22	 Working with unmanaged code437

CHAPTER 23	 Attributes and reflection . 453

CHAPTER 24	 Living with COM . 475

		 437

C H A P T E R 2 2

Working with unmanaged code

After completing this chapter, you will be able to:

■■ Explain the issues that affect managed and unmanaged code.

■■ Use managed objects in unmanaged code.

■■ Use the Platform Invoke mechanism to call unmanaged functions in DLLs.

Although the primary focus of this book is using C++/CLI with the Microsoft .NET Framework, at
times you’ll have to call functions outside the .NET environment.

The System::Runtime::InteropServices namespace contains classes and structures to help with
interoperation between .NET and the outside world. In this chapter, I’ll introduce one feature of

the namespace—the Platform Invoke mechanism for calling unmanaged functions within DLLs. We
also investigate some of the other issues that surround interacting with unmanaged code. Chapter 24,
“Living with COM,” considers considers interoperating between the Component Object Model (COM)
and .NET.

Managed vs. unmanaged code

Code and data that live in the .NET world are called managed because locations and lifetimes are
managed by the Common Language Runtime (CLR). Code and data that exist outside of .NET are
called unmanaged, because there is no central mechanism for managing their lifetimes. Sometimes
you have to mix the two, calling existing unmanaged code from within .NET. This section introduces
some of the issues and techniques that you’ll need to consider in this situation.

Mixed classes
Although managed classes are normally composed of other managed types, it is possible to mix man-
aged and unmanaged types as members of classes under some circumstances. It is also possible to
have a pointer to an unmanaged object as a member of a managed class, as in this example:

ref class ManagedClass
{
 UnmanagedClass *puc;
 ...
};

438   Microsoft Visual C++/CLI Step by Step

Notice the use of the asterisk (*) rather than the caret (̂): this is a pointer to an unmanaged type,
not a handle.

Because the member is unmanaged, it’s up to you to manage the lifetime of the object at the oth-
er end of the pointer. You should handle this carefully: unmanaged objects sometimes need explicit
deletion at a particular point in the code, and this might not fit well with the .NET garbage collection
model. However, you can declare destructors for managed classes and use delete on objects of man-
aged types, so it’s possible to arrange for correct object deallocation in most circumstances.

You can’t have an unmanaged object as a member of a managed class, such as is illustrated in the
following:

ref class ManagedClass
{
 UnmanagedClass obj; // C4368: mixed types are not supported
 ...
};

An unmanaged object will only work as a class member if the host object is explicitly deleted at
some point: at the end of the enclosing block for an automatic variable, at the end of the process for
a global variable, or when delete is called on a pointer. Managed objects don’t work in this way, and
the garbage collector can’t collect an unmanaged object.

It’s impossible to have a handle to a managed type as part of an unmanaged class, as shown here:

class UnmanagedClass
{
 ManagedClass ^obj; // C3265: cannot declare a managed 'obj'
 // in an unmanaged 'UnmanagedClass'
 ...
};

Because the unmanaged object doesn’t exist in the .NET world, the handle to the contained object
is invisible to the garbage collector. Thus, the garbage collector doesn’t know who has a reference to
the object or when it can be collected.

The GCHandle type
There is a way to use a managed type as part of an unmanaged class by using the GCHandle type
provided in the System::Runtime::InteropServices namespace. GCHandle asks the runtime to give you
a “handle” to refer to a managed object from unmanaged code. You use the GCHandle::Alloc static
method to create the handle, and the handle’s Free method to release it again. Here’s how you’d use
GCHandle if you wanted to pass a pointer to a managed object to unmanaged code:

1.	 Create a GCHandle to refer to your object. GCHandles can be converted to and from integers
for ease of passing them between functions.

	 Chapter 22  Working with unmanaged code    439

2.	 Pass the GCHandle to the unmanaged code. As long as the handle hasn’t been freed, the
runtime won’t collect the object.

3.	 Call Free on the handle when the unmanaged code no longer needs it. At this point, the run-
time is free to collect the object if no one else is using it.

To help you use GCHandles within unmanaged code without your having to get into the details of
using Alloc and Free, Microsoft provides a helper template class called gcroot. The following exercise
shows you how to use gcroot to include a pointer to a managed type as part of an unmanaged class:

1.	 Start Microsoft Visual Studio 2012 and create a new CLR Console Application project named
Manage.

2.	 Add an #include directive for the gcroot.h system header file just below the stdafx.h include
directive.

#include <gcroot.h>

This system header file defines the gcroot helper class.

3.	 Add a using directive to the top of the code to make it easier to use the System::Runtime::Interop
Services namespace.

using namespace System::Runtime::InteropServices;

4.	 Add the definition of a simple managed class to the code.

ref class MClass
{
public:
 int val;
 MClass(int n) : val(n) { }
};

This class simply wraps an integer, whose value is set in the constructor.

5.	 Add the definition of an unmanaged class.

class UClass
{
public:
 gcroot<MClass^> mc;

 UClass(gcroot<MClass^> pmc) : mc(pmc) { }

 int getValue()
 {
 return mc->val;
 }
};

440   Microsoft Visual C++/CLI Step by Step

The definition of the mc variable is an example of using a template class. The definition effec-
tively creates a gcroot variable that wraps a GCHandle to an MClass pointer. The GCHandle is
created when the gcroot object is created, and it is freed when the gcroot object is destroyed.

A UClass object is passed a handle to a managed MClass object when it is created, and this
handle is stored away in the gcroot object. The getValue function simply returns the public val
member from the MClass object by value, so you can verify that the code really lets you ac-
cess a managed object from an unmanaged context.

6.	 Modify the main function to use the classes.

int main(array<String^>^ args)
{
 Console::WriteLine("Testing...");

 // Create a managed object
 MClass ^pm = gcnew MClass(3);

 // Create an unmanaged object
 UClass uc(pm);

 Console::WriteLine("Value is {0}", uc.getValue());

 return 0;
}

The code first creates a managed object and initializes it with an integer. The pointer to this
object is then used to initialize an unmanaged object, and the getValue function is used to
extract the value from the managed object before printing it out. When the UClass object
goes out of scope, the gcroot is destroyed, which frees the GCHandle and, in turn, frees up the
managed object.

Tip  If the managed type that you want to use with gcroot has a destructor, using the
auto_gcroot type (declared in <auto_gcroot.h>) will call the destructor on the object
when the gcroot goes out of scope.

7.	 Build and run the application.

Pinning and boxing

This section discusses two C++/CLI concepts, pinning and boxing, and shows you how they’re used in
code.

	 Chapter 22  Working with unmanaged code    441

Interior pointers
Before getting to pinning, let’s briefly discuss interior pointers. We will do this by looking at a scenario
in which you have a managed object, and you want to pass it to an unmanaged function that requires
a pointer.

You probably know that the garbage collector can (and does) move objects around on the man-
aged heap to maximize free space. This means that you can’t use an unmanaged pointer to refer to a
managed object, because the address held in the pointer could end up pointing to the wrong place if
the garbage collector moves the object. In fact, the compiler will give you an error if you try to use an
ordinary pointer with a managed object.

An interior pointer is a pointer whose address will be updated if the object to which it refers is
moved. They are called “interior” pointers because you use them to point to a member within a man-
aged object.

Note  You can’t use an interior pointer to point to a “whole” managed object; you can only
point to a field within an object.

Pinning pointers
The CLR assumes that it can move objects around in the managed heap whenever it wants. At times,
however, you might need to tell the CLR to leave objects where they are. For example, if you want to
pass a pointer to a managed object to an unmanaged function, you don’t want the CLR to move the
object around in memory while the object is being used by the unmanaged code.

A pinning pointer is a pointer to a managed object, but the value of the pointer cannot be
changed, which means that the garbage collector cannot move it around in memory. Thus, creating
a pinning pointer to an object gives you a pointer that can safely be passed out to unmanaged code
because you can be sure that the address is going to remain valid.

You can use pinning on all or part of a managed object, and pinning a member of a managed
object results in the entire object being pinned. For example, pinning the first element of an array will
result in the entire array being pinned. The object will remain pinned until there are no references left
to the pinning pointer.

The code fragment that follows shows the creation and use of a pinning pointer. First, assume that
we have an unmanaged function that takes a pointer to an integer.

void someFunc(int *p)
{
 // Do something with the integer value…
 int n = *p;
}

442   Microsoft Visual C++/CLI Step by Step

Here is how we could use this with a managed array:

// Create a managed array of int
array<int> ^arr = gcnew array<int>(5);

// Create a pinning pointer to the first element
// Note there is no '^', and that '&' is used to take the address of the object
pin_ptr<MyClass> pin = &arr[0];

// Pass the integer member to an unmanaged function
someFunc(pin);

// Zero out the pinning pointer
// The array is not pinned any more
pin = nullptr;

After the array element has been pinned, you can pass its address to the unmanaged function,
confident that the int won’t be moved around in memory. Observe how there is an implicit conversion
between pin_ptr<int> and int*, so you don’t need to convert it yourself. When you’re finished, assign-
ing nullptr to the pinning pointer frees the array object so that it can be moved.

Boxing and unboxing
Boxing and unboxing, which will be discussed in a moment, make it possible for value types to be
treated as objects. Chapter 9, “Value types,” covers value types in detail and teaches that they are
fundamentally different from reference types. To recap, value types have three particular properties:

■■ Value types are stored on the stack, unlike references, which are stored on the run-time heap.

■■ Instances of value types are always accessed directly, unlike reference types, which are
accessed through references. This means that you don’t use the new operator when creating
instances. It also means that value types are not garbage-collected.

■■ Copying value types copies the value rather than the reference.

Anything that wraps a simple value, such as a Boolean or an integer, and that is less than about
16 bytes in size is a good candidate for making a value type. Because value types aren’t accessed via
references, they can be far more efficient than the equivalent reference types but can’t be regarded
as objects in the same way that reference types can. This becomes a problem when you want to use
a value type in a context where an object reference is needed. For example, consider the overload of
the Console::WriteLine function that performs formatted output, whose prototype is shown here:

static void WriteLine(String^, Object^);

The first String^ parameter is the format string, and the second is a handle to any .NET reference
type. Because value types aren’t accessed by references, you can’t directly specify a value type. But,
you will find that the following works, even though “12” is not an instance of a reference type:

int foo = 12;
Console::WriteLine("foo is {0}", foo);

	 Chapter 22  Working with unmanaged code    443

Boxing
Boxing wraps a value type in an object “box” so that it can be used where an object reference is
needed. In C++/CLI, this wrapping is done automatically.

The following three things happen when an object is boxed:

■■ A managed object is created on the CLR heap.

■■ The value of the value type is copied, bit by bit, into the managed object.

■■ The address of the managed object is returned.

Be aware that the managed object contains a copy of the value type. This means that any modifi-
cations you might make to the managed wrapper don’t propagate back to the original value. You can
see this happening if you look at the generated code the IL disassembler tool (ISDASM). The IL gener-
ated for the preceding two lines of C++/CLI code look something like this:

IL_0002: ldc.i4.s 12
IL_0004: stloc.1
IL_0005: ldstr "Value is {0}"
IL_000a: ldloc.1
IL_000b: box [mscorlib]System.Int32
IL_0010: call void [mscorlib]System.Console::WriteLine(string, object)

The first line pushes a literal 12 onto the stack, and the second line stores it (stloc) into a local vari-
able. After the string literal is pushed onto the stack, the ldloc instruction takes the local variable and
pushes it back onto the stack. You can see that the next line is a box instruction, which generates an
object to hold the integer before calling WriteLine.

Unboxing
What if you want to retrieve the value from a boxed object? The following brief exercise shows you
how to get the value back out of a boxed object by using a cast.

1.	 Create a new CLR Console Application project named Boxing.

2.	 Edit the main function to create an integer and box it.

int main(array<String^>^ args)
{
 Console::WriteLine("Boxing Example");

 // Create an int
 int foo = 12;

 // It will get boxed automatically
 Object ^obj = foo;

 // Use the boxed object
 Console::WriteLine("Value of foo is {0}", obj);

 return 0;
}

444   Microsoft Visual C++/CLI Step by Step

3.	 Add the following code to get the value back out of the box:

// Unbox the value
int fooTwo = safe_cast<int>(obj);

Console::WriteLine("fooTwo is {0}", fooTwo);

The safe_cast checks to see whether a boxed int is on the other end of the obj pointer; if it is, it
returns an int.

Note  The safe_cast is explored in Chapter 3, “Variables and operators,” but let’s take
a moment to consider it here. Like dynamic_cast, a safe_cast is performed at run
time. It checks whether the type on the other end of the handle is of the right type.
If it is, the cast is performed and the value returned. Unlike dynamic_cast, which re-
turns a null if the types don’t match, safe_cast will throw an exception.

4.	 Build and run the application.

Using P/Invoke to call functions in the Win32 API

Although it’s possible to do a great deal by using the functionality provided in the .NET Framework,
at times you’ll need to use code that wasn’t written for .NET to accommodate situations such as the
following:

■■ You need to call a Microsoft Windows API function that doesn’t have a .NET equivalent.

■■ You have some code in a Dynamic-Link Library (DLL) that originated outside .NET and can’t be
rewritten.

■■ You have code that needs to be written in a language that’s not yet supported by the .NET
Framework.

Whatever the reason, the code you’re calling exists outside the .NET-managed environment,
so you need a way to pass function calls into and out of .NET. The mechanism to do this is called
P/Invoke (for Platform Invoke, pronounced “p-invoke”). It is provided to let you call functions in DLLs.

Using P/Invoke involves adding a prototype to your code that uses attributes to inform .NET about
the function you’re proposing to call. In particular, you need to specify the name of the DLL contain-
ing the function, the name of the function, what arguments the function takes, and what the function
returns.

A mechanism such as P/Invoke is necessary to facilitate communication between managed and
unmanaged code. Take strings as an example: A string in C++/CLI is a handle to a String object, but
in standard C++, a string isn’t represented by an object. Instead, a string is a pointer to a series of
memory locations that contain characters and is terminated by a null. If you’re going to pass a string

	 Chapter 22  Working with unmanaged code    445

data between managed and unmanaged code, something has to convert between the corresponding
managed and unmanaged data types. This conversion process is called marshaling, and it is one of
the tasks that P/Invoke performs for you.

Identifying functions
There are two points that you need to be aware of when identifying functions to call using
P/Invoke. Although you usually identify a function in a DLL by name, you can also assign a
function in a DLL a number that can be used to execute the function at run time. If you need to,
you can identify a DLL function to P/Invoke by using this ordinal number.

When you call Windows API functions, you can also have two or more versions of functions
that take characters or strings as arguments because Windows can support more than one
character encoding. For example, standard Microsoft Windows XP supports both the ASCII (one
byte per character) and Unicode (two bytes per character) character encodings. This means
that both ASCII and Unicode versions of each function must exist, identified by an “A” or a “W”,
respectively, added to the end of the function name (for example, MessageBoxW). Although
you can call the different versions directly, the C++ compiler maps a call to MessageBox onto
the correct function depending on whether you’re using ASCII or Unicode in your application.

As you’ll discover in the exercise later in this section, you can specify which version of a
function you want to use with P/Invoke. If you don’t explicitly pick one, the ASCII version will be
used.

The following exercise shows you how to call an unmanaged function in one of the Windows
system DLLs. The obvious candidate for this exercise is MessageBox for two reasons: first, it’s a stand-
alone function and doesn’t require any setting up; second, it’s obvious whether the call has worked.

The MessageBox function—that is, the MessageBoxA and MessageBoxW functions—reside in the
User32.dll system DLL. Three system DLLs contain the unmanaged Windows API code:

■■ User32.dll, which contains functions for message handling, timers, menus, and
communications

■■ Kernel32.dll, which contains low-level operating system functionality for memory manage-
ment and resource handling

■■ GDI32.dll, which contains the GDI graphics subsystem code

How do you know which DLL holds a particular system function? If you look the function up in
the Platform SDK, you’ll usually find a clue in the “Requirements” section at the end of the topic. For
example, the Help topic for MessageBox has the following lines:

Library: User32.lib

DLL: User32.dll

446   Microsoft Visual C++/CLI Step by Step

The first line indicates that if you want to use MessageBox in traditional C++ code, you’ll have
to link with a library named User32.lib, and the second denotes that the code actually resides in
User32.dll.

Now that you know where you can find the MessageBox function, here’s the exercise:

1.	 Start a new CLR Console Application project named Message.

2.	 Add a using directive to the top of the project.

using namespace System::Runtime::InteropServices;

Most of the interop features are part of the System::Runtime::InteropServices namespace, and
it’s much easier to use if you declare the namespace.

3.	 Add the P/Invoke prototype for the MessageBox function before the main routine:

// Set up the import
[DllImport("User32.dll", CharSet=CharSet::Auto)]
int MessageBox(IntPtr hwnd, String ^text,
 String ^caption, unsigned int type);

There is quite a lot to explain about these few lines of code. The prototype for the Message
Box function is declared by using the DllImport attribute. The two parameters passed to the
attribute are the name of the DLL in which the function resides, and (because this is a function
that uses characters or strings) an indication of which version to use. CharSet::Auto leaves it
up to the target platform to decide which version to call and how to convert the string argu-
ments.

The first argument to MessageBox is a “handle to the owning window.” This is a handle in the
original Win32 sense, and it is basically a pointer. This is used to establish the MessageBox as a
child of another window, and we’re not concerned about it here. The rather strange choice of
argument name (hwnd) comes from the original type, HWND.

Note  An IntPtr is an integer type large enough to hold a native pointer, so it will be
32 bits on 32-bit Windows and 64 bits on 64-bit systems. It is commonly used in in-
terop to pass pointers to and from unmanaged code.

Notice how String handles are used to pass string information, where the original function
would require a Windows LPTSTR type. The P/Invoke marshaling automatically converts the
data when making the call. The final argument is the style of MessageBox, which governs
which icon and buttons it will display. The default value is zero, which just displays an OK
button.

	 Chapter 22  Working with unmanaged code    447

4.	 Add code to the main function to call MessageBox:

int main(array<String^>^ args)
{
 Console::WriteLine("P/Invoke Example");

 String ^theText = "Hello World!";
 String ^theCaption = "A Message Box...";
 MessageBox(IntPtr::Zero, theText, theCaption, 0);

 return 0;
}

The first argument is passed as IntPtr::Zero, which is how you assign a null value to an IntPtr.
We pass null because in this simple example we aren’t concerned with setting the owner.

5.	 When you build and run the application, you’ll see a MessageBox displayed on the screen, as
shown in the following screen shot:

The DllImportAttribute class
You used the DllImportAttribute class in the previous exercise to provide a prototype for an unman-
aged function. This class has a number of fields (data members) that can be used when constructing
the prototype, and they’re listed in the following table:

Field Description

BestFitMapping Selects a suitable replacement character where an exact
conversion does not exist, for example, using “c” instead
of a © symbol.

CallingConvention Defines the calling convention used when passing argu-
ments to the unmanaged function.

CharSet Defines how characters and strings are to be handled
during marshaling.

EntryPoint Indicates the name or ordinal number of the DLL function
to be called.

448   Microsoft Visual C++/CLI Step by Step

Field Description

ExactSpelling Indicates whether the name of the entry point should be
modified to correspond to the character set in use.

PreserveSig Used for COM methods, this field should be set to true if
the return values from methods shouldn’t be altered in
any way.

SetLastError If true, the caller can use the Win32 GetLastError function
to determine whether an error occurred.

ThrowOnUnmappableCharacter If true, will throw an exception when a best-fit match for a
character is not available.

Let’s look at the more common fields in detail. CallingConvention defines how arguments are
passed between the managed and unmanaged code, and will take one of the values in the Calling
Convention enumeration. Different languages use different ways of passing arguments, so Windows
supports a number of different calling conventions. C and C++ normally use the C calling convention,
often known as Cdecl, whereas many other Windows languages use the standard calling convention,
often abbreviated to StdCall. You call Windows API functions by using StdCall, which is the default,
unless you use the CallingConvention field to choose another.

With CharSet, you can specify how characters and strings are to be marshaled. It takes one of the
values from the CharSet enumeration. You can specify CharSet::Ansi, in which case all characters and
strings are converted to one-byte ANSI characters and an “A” is appended to the name of the DLL
entry point. Choosing CharSet::Unicode converts characters and strings to use two-byte Unicode
characters and appends a “W” to the entry point name. However, it’s usually sufficient to specify
CharSet::Auto, which chooses the best option for the host system.

Using the EntryPoint field, you can specify the name or ordinal number of the entry point in the
DLL. If you don’t specify this field, as in the preceding exercise, the entry point name is taken to be
the function name given in the prototype. A name given using the EntryPoint field takes precedence
over the prototype name, so this gives you the ability to provide synonyms for unmanaged functions
if you want to refer to them by another name when calling them in your code. The following code
fragment shows how you could define a synonym for the MessageBox function:

[DllImport("User32.dll", EntryPoint="MessageBox",
 CharSet=CharSet::Auto)]
int WindowsMessageBox(IntPtr hwnd, String ^text,
 String ^caption, unsigned int type);

You call the function as WindowsMessageBox, and the call is mapped onto the appropriate
MessageBox entry point in User32.dll.

	 Chapter 22  Working with unmanaged code    449

Passing structures
You’ll often need to pass structured data to arguments to unmanaged functions, and you must do
this carefully. In particular, you need to specify the way structures are laid out in memory to be sure
that they are passed around correctly. You specify the layout of structures and classes by using the
StructLayoutAttribute and FieldOffsetAttribute classes.

You add StructLayoutAttribute to managed types to define a formatted type with a particular lay-
out. There are three possible layout types that you can specify for a formatted type:

■■ Automatic layout (LayoutKind::Auto), in which the runtime might reorder the members if it is
more efficient. You never use automatic layout for types that are going to be used with
P/Invoke because you need to be sure that everything stays in the same order.

■■ Explicit layout (LayoutKind::Explicit), in which members are ordered according to byte offsets
specified by FieldOffset attributes on each field.

■■ Sequential layout (LayoutKind::Sequential), in which members appear in unmanaged memory
in the same order they appear in the managed definition.

The following exercise shows how to call an unmanaged Windows API function that needs to be
passed a structure. The function is GetSystemPowerStatus, which reports on the AC and battery status
of the system. The Windows API defines a structure SYSTEM_POWER_STATUS, which contains the
status information. The definition of this unmanaged structure is shown here:

typedef struct _SYSTEM_POWER_STATUS {
 BYTE ACLineStatus;
 BYTE BatteryFlag;
 BYTE BatteryLifePercent;
 BYTE Reserved1;
 DWORD BatteryLifeTime;
 DWORD BatteryFullLifeTime;
} SYSTEM_POWER_STATUS, *LPSYSTEM_POWER_STATUS;

The prototype for the GetSystemPowerStatus function in the API documentation is this:

BOOL GetSystemPowerStatus(
 LPSYSTEM_POWER_STATUS lpSystemPowerStatus // status
);

The function takes a pointer to a SYSTEM_POWER_STATUS structure, fills it in, and hands back the
filled structure, returning a Boolean value to let you know whether it worked. Your task is to call this
function, passing over a structure, and then display the results.

1.	 Create a new CLR Console Application project named PowerMonitor.

2.	 Add the following using directive:

using namespace System::Runtime::InteropServices;

This makes it easier to refer to the attributes we’ll be using later.

450   Microsoft Visual C++/CLI Step by Step

3.	 Define a managed equivalent for the structure.

[StructLayoutAttribute(LayoutKind::Sequential)]
ref class PStat {
public:
 System::Byte ACLineStatus;
 System::Byte BatteryFlag;
 System::Byte BatteryLifePercent;
 System::Byte Reserved1;
 System::UInt32 BatteryLifeTime;
 System::UInt32 BatteryFullLifeTime;
};

Our equivalent of SYSTEM_POWER_STATUS is a managed class named PStat. The original defi-
nition contains two Windows data types: BYTE, which represents a one-byte integer, and so
can be represented by the System::Byte type; and DWORD, which is a 32-bit unsigned integer,
and so is represented by System::UInt32. The StructLayoutAttribute is attached to the class, and
LayoutKind::Sequential is specified so that the layout of the members will remain the same as
the data is passed through P/Invoke.

4.	 Define the prototype for the GetSystemPowerStatus function, as shown here:

// Define the BOOL type
typedef int BOOL;

// Prototype for the function
[DllImport("Kernel32.dll", CharSet=CharSet::Auto)]
BOOL GetSystemPowerStatus(PStat ^ps);

BOOL is a Windows type representing a Boolean value and is actually a typedef for an integer.
It has been widely used in the Windows API because C lacks a true Boolean type. The proto-
type uses the real name of the function as it occurs in Kernel32.dll, and the single argument is
given as a handle to our managed type.

5.	 Write the code to call the function. Edit the main function to create a PStat object and use it
to call the function, as illustrated in the following:

int main(array<String^>^ args)
{
 Console::WriteLine("Power Status Test...");
 PStat ^ps = gcnew PStat();

 BOOL b = GetSystemPowerStatus(ps);
 Console::WriteLine("Got status, return was {0}", b);

 return 0;
}

If the call worked, the return value should be nonzero, which represents a Boolean true value.

6.	 Build and run the application at this point, correcting any errors and checking the output.

7.	 Add code to report on the members of the class.

	 Chapter 22  Working with unmanaged code    451

// Report on the AC line status
Console::Write("AC line power status is ");
switch(ps->ACLineStatus) {
case 0:
 Console::WriteLine("'off'");
 break;
case 1:
 Console::WriteLine("'on'");
 break;
case 255:
 Console::WriteLine("'unknown'");
 break;
}

// Report on the battery status
Console::Write("Battery charge status is ({0})",
 ps->BatteryFlag);
if (ps->BatteryFlag & 1)
 Console::Write(" 'high'");
if (ps->BatteryFlag & 2)
 Console::Write(" 'low'");
if (ps->BatteryFlag & 4)
 Console::Write(" 'critical'");
if (ps->BatteryFlag & 8)
 Console::Write(" 'charging'");
if (ps->BatteryFlag & 128)
 Console::Write(" 'no system battery'");
Console::WriteLine();

// What's the percentage charge left in the battery?
// A value of 255 means unknown
if (ps->BatteryLifePercent == 255)
 Console::WriteLine("Battery life unknown");
else
 Console::WriteLine("Battery life is {0}%",
 ps->BatteryLifePercent);

// How many seconds battery life is left?
if (ps->BatteryLifeTime == -1)
 Console::WriteLine("Battery life in seconds: Unknown");
else
 Console::WriteLine("Battery seconds remaining: {0} secs",
 ps->BatteryLifeTime);

The first check is on the ACLineStatus field, which will have the value 0 (on), 1 (off), or 255
(unknown). The second check is on the status of the battery, and this value can be made up of
one or more of the values 1 (high charge), 2 (low charge), 4 (critically low charge), 8 (charg-
ing), and 128 (no battery present). Each of these represents a particular bit position within the
result, and the bitwise OR operator (&) is used to check which bits are set.

The final two checks print out the percentage of lifetime left in the battery and the number of
seconds. If the function can’t determine the number of seconds, it will return –1 in this field.

8.	 Build and run the application. You will obviously achieve the best results if you run it on a
laptop.

452   Microsoft Visual C++/CLI Step by Step

Quick reference

To Do this

Obtain a safe handle to a managed object so that
it won’t be garbage-collected while being used.

Use the System::Runtime::InteropServices::GCHandle::Alloc func-
tion to wrap a pointer to a managed object in a GCHandle.
The easiest way to do this is to use the gcroot helper class. For
example:

Foo ^ff = gcnew Foo();

gcroot<Foo^> pf = ff;

This code wraps the pointer to the Foo object with a GCHandle,
and handles cleanup when the gcroot is destroyed.

Fix all or part of a managed object in memory so
that it can be used safely by unmanaged code.

Use pin_ptr<> to create a pinning pointer. For example:

pin_ptr<Foo> p = gcnew Foo();

The managed Foo object won’t be moved in memory or garbage-
collected until the pinning pointer goes out of context or has null
assigned to it.

Convert a value type to an object so that it can be
used where an object is required.

This will happen automatically. Note that the value in the box is a
copy of the original.

Retrieve the value from a boxed object. Use safe_cast to cast the boxing object to the correct type, and
then dereference the pointer. For example:

int myVal = safe_cast<int>(po);

Call an unmanaged function in a DLL. Use the P/Invoke mechanism by declaring a prototype for the un-
managed function that uses the DllImport attribute to specify the
DLL in which the function resides and other optional parameters.

		 453

C H A P T E R 2 3

Attributes and reflection

After completing this chapter, you will be able to:

■■ Describe what attributes are.

■■ Use attributes to add metadata to managed types.

■■ Create your own attribute types.

■■ Access attribute metadata from code.

This chapter introduces metadata and attributes and shows you how to start defining and manipu-
lating metadata for your own .NET types.

Metadata and attributes

The concept of metadata is central to the way the Microsoft .NET Framework works, so to be an
effective .NET programmer, you need to know what it is and how to work with it. Metadata is data
attached to .NET data types that carries information about those types (in a broader sense, it is
data that describes data). A lot of metadata contains information that can’t be specified in the pro-
gramming language, and it offers a useful—many people would say essential—way to provide all the
extra information needed by the .NET runtime.

One of the major advantages of metadata is that it is stored along with the code, so extra data
doesn’t need to be stored separately. Traditionally, in Windows all extra data has to be stored in the
Windows registry. One of the main problems with this is ensuring that the data in the registry doesn’t
become corrupt or out of step with the code.

Another major advantage of metadata is that it provides a way to add version information to the
code so that you know which version of a component you’re using. This solves a lot of problems that
have plagued programmers since the early days of Windows; it is a huge step forward.

454   Microsoft Visual C++/CLI Step by Step

The compiler always attaches metadata to the output code to describe it, and the Common
Language Runtime (CLR) uses the metadata to control the loading and execution of the code. You
can also attach metadata to code by using attributes, which are special syntax elements that can be
attached to classes and class members. You’ll see how to use attributes later in this chapter.

You can see some of the metadata that the compiler attaches to your code if you use the IL disas-
sembler tool (ILDASM), which is included with the .NET Framework SDK. (You can find this tool in the
\Program Files\Microsoft SDKs\Windows\v8.0a\bin\NETFX4.0 Tools folder.)

Using ILDASM
The following example shows you how to use ILDASM to examine a simple application:

1.	 Start Microsoft Visual Studio 2012 and create a new CLR Console Application project named
Hello.

2.	 Add a new managed class to the application.

ref class Hello
{
public:
 static void SayHello()
 {
 Console::WriteLine("Hello, world");
 }
};

The class doesn’t really have to do anything particular; it is simply here so that you can disas-
semble it to look at the metadata.

3.	 Build the application to generate the executable.

4.	 Run ILDASM. To do so, on the Tools menu, click Visual Studio Command Prompt, and then
type ildasm on the command line.

5.	 On the ILDASM File menu, click Open, navigate to the Hello.exe executable, and then open it.

	 Chapter 23  Attributes and reflection    455

A window opens that should look similar to the following:

6.	 We’re interested in the managed type Hello, which is indicated by the blue component sym-
bol. Click the plus sign (+) to expand the tree for Hello and display the details of the class, as
depicted in the following screen shot:

456   Microsoft Visual C++/CLI Step by Step

The type has three entries: the details of the class, and the entries for two methods, which are
the SayHello method you added and the default constructor provided by the compiler.

7.	 Double-click the red triangle to bring up the class information.

A window similar to the following appears:

The definition of the managed class—which extends System::Object—is marked as private auto
ansi. These keywords represent items of metadata that have been added by the compiler to describe
the class. You can open the other methods in this class to see what metadata is attached to them.

	 Chapter 23  Attributes and reflection    457

You can inquire about attributes at run time by using reflection, which is a feature by which pro-
grammers can obtain information about the objects they are using, such as what class the objects be-
long to, what methods the objects support, and what metadata is attached to them. Using attributes
in code is very powerful because it gives you a way to extend the programming language, introduc-
ing new properties for your classes that don’t exist in the base language.

Later in the chapter, you’ll see how to create custom attributes and how to use code to look at the
attributes attached to classes.

Using predefined attributes

In this section, you’ll learn how to use the attributes that are predefined by the .NET Framework. You
can use these attributes in two ways: by editing the AssemblyInfo.cpp file that comes as part of a C++/
CLI project, and by attaching attributes to managed elements in your code.

The AssemblyInfo.cpp file
Every C++/CLI project includes an AssemblyInfo.cpp file that contains code affecting the attributes
applied to the assembly. You can edit this file to customize the assembly attributes, which will be used
to set the metadata in the assembly at build time. The following exercise shows you how to modify
assembly attributes:

1.	 Create a new CLR Console Application project named AssemblyAttributes.

2.	 Open the AssemblyInfo.cpp file and examine its contents.

Observe that the file contains a number of entries of the following form:

[assembly:AssemblyTitleAttribute("AssemblyAttributes")];

Many of these have empty strings as arguments.

3.	 Find the version number attribute and edit it to produce a new version, such as in the follow-
ing example:

[assembly:AssemblyVersionAttribute("1.1.105.3")];

This number would correspond to version 1.1, build 105, revision 3.

4.	 Compile and build the application. If you now look at the assembly by using ILDASM, you can
see the version in two places. First, it will show in the pane at the bottom of the ILDASM main
window, as demonstrated here:

458   Microsoft Visual C++/CLI Step by Step

You can also see it by double-clicking the MANIFEST entry in the main window and scrolling
down to the bottom of the data window that opens. The line within the .assembly Assembly
Attributes block that begins with .ver is the one that lists the version metadata:

.ver 1:1:105:3

You can check this version number in applications that use this assembly, but explaining how to do
this is beyond the scope of this book.

Using the predefined attribute classes
Although much of the metadata produced by the compiler is predefined and you can’t alter it, a
number of optional standard attributes are provided by various .NET Framework namespaces. The
following table lists just some of the more than 300 standard attributes that you might want to use in
your own projects:

Class Description

System::AttributeUsageAttribute Specifies the usage of another attribute class

System::CLSCompliantAttribute Indicates whether an application element is CLS-
compliant

System::Diagnostics::ConditionalAttribute Indicates that a method can be called if a preprocessor
symbol is defined

System::Diagnostics::DebuggableAttribute Modifies code generation for run-time JIT (Just-In-Time)
debugging

System::Diagnostics::DebuggerHiddenAttribute Applied to a method to indicate that breakpoints can’t
be set in the code and that debuggers will not stop in the
method

System::Diagnostics::DebuggerStepThroughAttribute Applied to a method to indicate that the debugger will
not stop in this method, although breakpoints can be set

System::FlagsAttribute Indicates that an enumeration is to be used as a set of
flags and can be represented by a bit field

System::NonSerializedAttribute Indicates that a field of a serializable class should not be
serialized

System::ObsoleteAttribute Indicates application elements that are no longer in use

System::ParamArrayAttribute Indicates that a method accepts a variable number of
arguments

System::Runtime::InteropServices::MarshalAsAttribute Indicates how to marshal data between managed and
unmanaged code

System::Runtime::InteropServices::StructLayoutAttribute Determines how a type is laid out in memory

System::SerializableAttribute Indicates that a class can be serialized

The following exercise shows you how to use one of the standard attributes in code. You’ll use the
ObsoleteAttribute class to mark a class method as obsolete and see how the compiler gives a warning
when you use the obsolete method. This exercise will also show you how to build a C++/CLI Dynamic-
Link Library (DLL) and use it in code. If you want to know more about DLLs, take a moment to read
the following sidebar.

	 Chapter 23  Attributes and reflection    459

DLLs in Windows
Windows executable code can be packaged in two forms: as an executable, or as a DLL. DLLs
contain executable code but can’t run on their own. A DLL contains functions or classes used by
other code in a process. It is loaded at run time.

There are both advantages and disadvantages to using DLLs. Here are some advantages:

■■ DLLs can be loaded and unloaded on demand, so applications can control their memory
use.

■■ They can be shared by more than one process, so they are a good way to provide shared
functionality such as printer drivers.

■■ Using DLLs means that it is possible to upgrade or fix part of an application without hav-
ing to redistribute or reinstall everything.

There is also one major drawback to DLLs in the traditional Windows world: an application
might use the wrong version of a DLL. When an application wants to load a DLL, it looks along
the path for a file with the right name and then loads the first one it finds. So, if a user has
changed the order of directories on their path—or if the path has been changed by installing
or removing an application—the application might find another version of the DLL file before
the correct one. This means that locating the right DLL is dependent on the individual com-
puter setup, making it hard to diagnose and fix.

However, using the wrong version of a DLL isn’t a problem for .NET programmers, because
assemblies—the fundamental building blocks of .NET applications—have version information
built in, and it is possible to specify in the code exactly what versions of an assembly are ac-
ceptable. If code does end up running on a computer with the wrong version of an assembly,
the result will be a precise and repeatable error message rather than odd behavior.

In the .NET world, DLLs provide one way to package up assemblies. If an assembly contains a
standard entry point such as main or WinMain, it is built as an executable with an .exe exten-
sion and can be executed from the command line. If the assembly doesn’t contain an entry
point, it is built as a library assembly with a .dll extension. A library assembly has no entry point
to begin execution but contains types that can be referenced from other assemblies.

This exercise shows you how to use a standard attribute as well as how to create and use a DLL.
Imagine that you have a class that didn’t use properties but, instead, had an old-fashioned explicit
getter function. You decide to add properties and want to inform developers that they should not be
using the old getter function.

1.	 Create a new CLR Console application named UseAttributes.

You’ll add code to this project later on in the exercise.

460   Microsoft Visual C++/CLI Step by Step

2.	 You create DLLs by using a Class Library project. In Solution Explorer, right-click the solution
name. On the shortcut menu that appears, point to Add, and then click New Project.

3.	 When the Add New Project dialog box appears, select Class Library, call the project MyDll,
and then click OK

The MyDll.h file opens in the editor.

4.	 Edit the class definition so that it looks like this:

namespace MyDll {

 public ref class TestClass
 {
 int val;
 public:
 TestClass(int n) : val(n) { }

 int getVal() { return val; }

 property int Val {
 int get() { return val; }
 }
 };
}

You can see that in addition to the class having a getter function, it now also has a property
that does the same job.

5.	 You don’t want to remove the getter function because that might break existing client code,
so you mark it as obsolete by using the Obsolete attribute:

[Obsolete("Use the Val property instead", false)]
int getVal() { return val; }

The Obsolete attribute alerts the compiler that this function shouldn’t be used, and the mes-
sage should be used to inform developers why and what to do instead. The second argument
directs the compiler as to whether to treat use of this function as an error or to only issue a
warning.

6.	 Build the application to ensure that you have no coding errors.

7.	 To use the DLL from the console application, you must add a reference to the console project.
Open the project properties dialog box for the UseAttributes project by right-clicking the
project name (not the solution name!) and then, on the shortcut menu, click Properties. In the
dialog box, click Common Properties, and then, in the pane on the left, click Framework And
References.

	 Chapter 23  Attributes and reflection    461

8.	 Click the Add New Reference button to open the Add Reference dialog box. In the pane on
the left, click the Solution entry. Doing so shows all the projects in the current solution. You
should see MyDll listed in the center pane: select the check box adjacent to it, and then click
OK twice to dismiss the dialog boxes. If you expand the External Dependencies entry under
the UseAttributes project, you should see that it now displays an entry for MyDll.

9.	 Open the UseAttributes.cpp source file and add a using directive for the MyDll namespace.

using namespace MyDll;

10.	 Edit the main function to create an object and call its obsolete get method, as shown here:

int main(array<System::String ^> ^args)
{
 TestClass ^tc = gcnew TestClass(4);

 int n = tc->getVal();

 return 0;
}

11.	 Build the application.

You should see the following warning from the compiler:

UseAttributes.cpp(12): warning C4947: 'MyDll::TestClass::getVal' : marked as obsolete
 Message: 'Use the Val property instead'

You could also try changing the second argument to the Obsolete attribute to true, rebuild the
entire solution by selecting Rebuild Solution from the Build menu, and check that use of the obsolete
function is now treated as an error.

Note  When you use the Build command, Visual Studio only recompiles those files that
have changed since the last build. Using Rebuild causes Visual Studio to rebuild the entire
project. This can be useful when you’ve made significant changes.

Defining your own attributes

As you’ll see in this section, you can easily define custom attributes and use them in your projects.
Custom attributes are quite simple to write because an attribute’s parameters are simply represented
by a class with properties and methods. For example, suppose you had the following attribute at-
tached to a class designed to control the generation of logging information at run time:

[LogAttribute("myfile.log", type=LogAttribute::AllMethods)]
ref class MyClass...

462   Microsoft Visual C++/CLI Step by Step

The attribute has two parameters: one for the log file name, and a second that determines the
level of logging. The attribute is represented by a class called LogAttribute whose members contain
the file name and type information. Information about the attribute class is included with the
metadata for MyClass, and a LogAttribute object can be queried at run time to retrieve its parameters.
You’ll see how to query attributes in code in the final section of this chapter.

You can use any class to represent an attribute, but you will often use a class that derives from
System::Attribute because that will give you a number of useful methods.

Attribute targets
Attributes can be used at all levels in .NET, so you can apply them to whole assemblies, to .NET
types, or to individual methods and properties within types. An attribute often isn’t applicable
at all levels, so there needs to be some way to restrict the items to which an attribute can be
attached.

The AttributeUsage attribute, represented by the System::AttributeUsageAttribute class, is a meta-
attribute: an attribute that is applied to attributes. You attach an AttributeUsage attribute to the class
that implements an attribute to indicate where it can be used. Here’s an example:

[AttributeUsage(AttributeTargets::Method)]

This attribute would indicate that the attribute class can be used only on methods. The following
table lists the members of the AttributeTargets enumeration that control where attributes are valid:

Member This attribute can be applied to…

All Any element

Assembly An assembly

Class A class

Constructor A type constructor

Delegate A delegate

Enum An enumeration

Event An event

Field A field (for instance, Data member)

Interface An interface

Method A method

Module A Portable Executable (PE)

Parameter A parameter

Property A property

ReturnValue A return value

Struct A structure; for example, a value type

	 Chapter 23  Attributes and reflection    463

If you want to specify more than one target, you can combine two or more members together
with the bitwise OR operator (|), as you’ll see in the next exercise. As you might expect, an attribute
without AttributeUsage can be applied to any code element.

Attribute class properties
Although some attributes have no parameters, most will specify at least one. Attribute parameters fall
into two groups:

■■ Positional parameters, which are identified simply by their position in the parameter list

■■ Named parameters, which are specified as a name/value pair

Consider the custom attribute we used as an example:

[LogAttribute("myfile.log", type=LogAttribute::AllMethods)]

This attribute has one positional parameter and one named parameter called type. Positional
parameters always appear before named parameters, are specified in a fixed order, and are passed to
the class constructor. Named parameters are implemented as properties in the attribute class.

Design criteria for attribute classes
Before moving on to the exercise, here are a few design criteria that you should keep in mind when
you write a custom attribute class:

■■ Always add “Attribute” to the class name for an attribute (for example, call a class
DocumentationAttribute rather than Documentation).

■■ Use positional arguments for required parameters.

■■ Use named arguments for optional parameters.

■■ Provide a read-only property for each positional argument.

■■ Provide a read/write property for each named argument. Be sure the name of the property
differs in case from that of the argument (for example, for an argument called type, provide a
property called Type).

Writing a custom attribute
This exercise shows you how to create a custom attribute that can be used to document methods and
properties. In the next section, you’ll see how to write code that makes use of this attribute.

1.	 Create a new CLR Class Library project named CustomAttributes.

The custom attribute needs to be created as a DLL so that it can be used in other projects.

464   Microsoft Visual C++/CLI Step by Step

2.	 Open the CustomAttributes.h header file and edit the skeleton class as follows:

namespace CustomAttributes
{
 [AttributeUsageAttribute(AttributeTargets::Method |
 AttributeTargets::Property)]
 public ref class DocumentationAttribute : Attribute
 {
 };
}

Our class is called DocumentationAttribute and inherits from System::Attribute. The name fol-
lows the convention of having the class name for an attribute end with “Attribute.” The class
is tagged with an AttributeUsage attribute that limits its use to class methods and properties.
Note how you can use more than one member of the AttributeTargets enumeration by com-
bining them with the bitwise OR operator.

3.	 The attribute will include three pieces of data: the documentation text (which will be a posi-
tional parameter), and author and date strings (which will be optional—and thus implemented
as named parameters). Add the declarations for the three members to the class.

namespace CustomAttributes
{
 [AttributeUsageAttribute(AttributeTargets::Method |
 AttributeTargets::Property)]
 public ref class DocumentationAttribute : Attribute
 {
 String ^text; // documentation text
 String ^author; // optional author field
 String ^date; // optional date field
 };
}

4.	 Add the constructor.

public:
 DocumentationAttribute(String ^txt) : text(txt) { }

The constructor takes a string as its only argument, saved away as the documentation text.

5.	 Add a read-only property so that users can retrieve the text at run time.

// Read-only property to return the text
property String^ Text {
 String^ get() { return text; }
}

	 Chapter 23  Attributes and reflection    465

6.	 Add read/write properties to allow access to the two named parameters.

// Properties for the positional parameters
property String^ Author
{
 String^ get() { return author; }
 void set(String ^au) { author = au; }
}

property String^ Date
{
 String^ get() { return date; }
 void set(String ^dt) { date = dt; }
}

Choose the names for the properties carefully because these are going to be used in client
code when using the attribute.

7.	 Build the application to check that you haven’t made any errors.

8.	 Add some code that will use the new attribute. In Solution Explorer, right-click the solution
name. On the shortcut menu that appears, point to Add, and then select New Project. Ensure
that the project type is set to CLR Console Application and call the project TestAtts.

9.	 Add an external reference to the CustomAttributes DLL, just as you did in steps 7 and 8 of the
previous exercise.

10.	 Open the TestAtts.cpp file and add a using namespace line to the top of the file:

using namespace CustomAttributes;

11.	 Define a managed class that uses the new custom attribute, as demonstrated here:

// A class to test the attribute
ref class TestAtts
{
 int val;
public:
 [DocumentationAttribute(
 "The TestAtts class constructor takes an integer",
 Author="julian", Date="10/10/01")]
 TestAtts(int v)
 {
 val = v;
 }
 [DocumentationAttribute(
 "The read-only Value property returns the value of"
 " the int class member", Author="julian")]
 property int Value
 {
 int get() { return val; }
 }
};

466   Microsoft Visual C++/CLI Step by Step

The Documentation attribute has been attached to the two members of this class. The con-
structor uses all three possible parameters, whereas the property uses only the text and the
Author named parameter.

Note  Remember that you can split a string literal over two lines, and as long as
there is nothing between the closing and opening double quotation marks except
white space characters, the preprocessor will concatenate them for you.

12.	 Build the application to ensure that it compiles cleanly.

You can now use ILDASM to see how the attribute data is held in the class.

13.	 Run ILDASM, as described earlier, and open the TestAtts.exe file.

14.	 Click the plus sign (+) next to the blue component symbol labeled TestAtts and then double-
click the .ctor entry.

This opens the disassembly for the constructor, as shown here:

You can see how the code creates a DocumentationAttribute object, which then forms part of
the TestAtts object. You can access this attribute object from code. (You’ll see how to do this
in the next section.)

15.	 Before leaving this exercise, try adding the Documentation attribute to the class, like this:

[DocumentationAttribute("The TestAtts class", Author="julian")]
ref class TestAtts
{
 ...
}

	 Chapter 23  Attributes and reflection    467

When you compile this code, the compiler will throw the following error message because the
attribute cannot be applied to classes:

TestAtts.cpp(8): error C3115: 'CustomAttribute::DocumentationAttribute': this attribute
is not allowed on 'TestAtts'
 c:\users\julian\documents\sbs\customattribute\debug\customattribute.dll : see
declaration of 'CustomAttribute::DocumentationAttribute'
 attribute can only be applied to: 'member function', 'property'

Using reflection to obtain attribute data

The final section of this chapter shows you how to use attributes at run time by inquiring about what
attribute data an object contains.

Reflection
Querying attribute data is only one aspect of reflection, a powerful feature supported by many
languages that have a runtime, such as C++/CLI, C#, and Java. Reflection is mainly used for
three things.

The first, also called introspection, is to find information about a type. For example, you can
find out what members a type has, what its base class is, and what interfaces it implements. You
will see this in action shortly, when you use it to find out the attributes attached to an object.

The second use of reflection is to create objects dynamically. This can be useful when you
don’t know the exact type you want until run time. For example, you could imagine a plug-in
mechanism that loads a DLL at runtime, uses introspection to see what types the DLL defines,
and then lets the user choose what to create.

The third use is dynamic invocation, which means executing functions and accessing proper-
ties on an object dynamically at run time. You’d typically do this on an object you’ve created
dynamically.

The Type class
Before I talk about reflection and how it relates to attributes, you need to know something about
the Type class. System::Type is a class that represents type declarations. This means that you can get a
Type object to represent any object or type to which you have a reference, and you can then use that
object to find out many details about the type. You can obtain Type objects to represent value types,
arrays, classes, interfaces, and enumerations. It is the primary way to access metadata and the way in
which you use reflection. Although the Type class is used mainly by developers writing language tools,
you might find it useful at times, such as when you want to access class attributes.

468   Microsoft Visual C++/CLI Step by Step

System::Type has a lot of members (over 40 properties and almost 50 methods). The following two
tables list a selection of properties and methods from this class to show you the sort of information
you can access through a Type object:

Property Description

Assembly Gets a reference to the assembly where the type is
defined

AssemblyQualifiedName Gets the fully qualified name of the type, including the
name of the assembly from which it was loaded

Attributes Returns a TypeAttributes object representing the collec-
tion of attributes for this type

BaseType Returns a Type for the type from which this object directly
inherits

FullName Returns the fully qualified name of the type, including
namespace

IsAbstract Returns true if the type is abstract

IsArray Returns true if the type is an array

IsByRef Returns true if the type is passed by reference

IsClass Returns true if the type is a reference type (and not an
interface or value type)

IsInterface Returns true if the type is an interface

IsPublic, IsNotPublic Indicates whether a type is marked as public or not

IsValueType Returns true if the type is a value type

Module Gets a reference to the module (the DLL) in which the
type is defined

Namespace Gets the namespace of the type as a string

UnderlyingSystemType Gets a reference to the Type representing the CLR type
underlying this language-specific type

Method Description

GetConstructor, GetConstructors Gets information about one or all of the constructors for
the type

GetEvent, GetEvents Gets information about one or all of the events defined
for the type

GetField, GetFields Gets information about one or all of the fields defined for
the type

GetInterface, GetInterfaces Gets information about one or all of the interfaces imple-
mented by the type

GetInterfaceMap Returns an InterfaceMapping showing how interface
methods are mapped onto actual class methods

GetMember, GetMembers Gets information about one or all of the members of
the type

GetMethod, GetMethods Gets information about one or all of the methods of
the type

	 Chapter 23  Attributes and reflection    469

Method Description

GetProperty, GetProperties Gets information about one or all of the properties
defined by the type

GetType A static function that returns a Type object

InvokeMember Invokes a member of the current type

ToString Returns the name of the type as a String

You might think that you use the Attributes property to find out about custom attribute properties,
but Attributes allows access only to standard system attribute data.

Accessing standard attributes
You can use the Type class’s Attributes property to find out about the standard attribute settings for
classes. This property returns a TypeAttributes, which is a value type; it’s a set of flags describing which
standard attributes are set for the type. This enumeration has over 30 members, and the table that
follows shows you some of the common attributes that form part of TypeAttributes.

Member Specifies that...

Abstract The class is abstract

AnsiClass Strings are interpreted using ANSI character encoding

AutoClass The string encoding is automatically decided

Class The type is a class

HasSecurity The type has security information associated with it

Import The type has been imported from another assembly

Interface The type is an interface

NotPublic The type is not public

Public The type is public

Sealed The type cannot be extended by inheritance

Serializable The type can be serialized

UnicodeClass Strings are interpreted by using Unicode character
encoding

You can determine whether a type has an attribute set by using the bitwise AND operator (&), as
shown in the following code fragment:

if ((tt->Attributes & TypeAttributes::Public) == TypeAttributes::Public)
 Console::WriteLine("Type is public");

If you want to check whether the type is a class, a value type, or an interface, you need to use the
ClassSemanticsMask member, as illustrated here:

if ((tt->Attributes & TypeAttributes::ClassSemanticsMask) ==
 TypeAttributes::Class)
 Console::WriteLine("Type is a class");

470   Microsoft Visual C++/CLI Step by Step

Accessing custom attribute data
Custom attribute data is accessed by using the static GetCustomAttribute and GetCustomAttributes
members of the Attribute class. As you’d expect, GetCustomAttribute retrieves information about
one attribute, whereas GetCustomAttributes returns you an array containing details of all the custom
attributes for a type. This exercise shows you how to use the Type class and the GetCustomAttributes
method to retrieve the attribute settings from the class you created in the previous exercise.

1.	 Continue with the project from the previous exercise.

2.	 All classes dealing with reflection reside in the System::Reflection namespace, so add the fol-
lowing using declaration to the others at the top of the source:

using namespace System::Reflection;

3.	 You need to create a Type object to use reflection to find out about custom attributes, so add
this code to the start of the main function:

int main(array<String^>^ args)
{
 Console::WriteLine("Testing Attributes");

 // Create an object and get its type
 TestAtts ^ta = gcnew TestAtts(3);
 Type ^tt = ta->GetType();

 return 0;
}

You obtain a Type object by using the GetType method that every .NET type inherits from
System::Object.

4.	 You can check whether there are any custom attributes on a class by using the GetCustom
Attributes method on the Type object, like this:

// See if there are any custom attributes on the class
array<Object^> ^atts = tt->GetCustomAttributes(true);
Console::WriteLine("Custom attributes on the class: {0}",
 atts->Length);

We know that the class doesn’t have any custom attributes, so you’d expect a count of 0. Note
the second Boolean argument, which specifies that we want to include any attributes inherited
from base classes.

5.	 Build and run the application and check the output.

6.	 To run the console application, you will need to set it as the startup project. In Solution
Explorer, right-click the project name, and then, on the shortcut menu, click Set As Startup
Project.

The project name should now be displayed in bold. This will be the project that is started
when you instruct Visual Studio to run the projects in the solution.

	 Chapter 23  Attributes and reflection    471

7.	 The attributes are actually on the class members, not on the class itself, so get a list of the
class members and query them, as shown in the following:

// Get info on the class members
array<MemberInfo^> ^mi = tt->GetMembers();
Console::WriteLine("Class members: {0}", mi->Length);

Calling GetMembers on the Type object returns an array of MemberInfo objects that describe
the members. Running this code on the TestAtts class informs you that there are seven
members.

Note  The seven members are the constructor, the private data value, the prop-
erty get method, and four methods inherited from the Object base class (Equals,
GetHashCode, GetType, and ToString).

8.	 Loop over the list of class members and get the custom attributes for each one.

for each (MemberInfo ^m in mi)
{
 array<Object^> ^atts = m->GetCustomAttributes(true);

 if (atts->Length > 0)
 {
 Console::WriteLine("Attributes for member {0}:", m->Name);
 for each(Object ^att in atts)
 {
 Console::WriteLine(" attribute is {0}", att->ToString());
 }
 }
}

The outer loop considers each member in turn and calls GetCustomAttributes on the Member
Info object to get a list of attribute objects. If there are any attribute objects for this member,
we print them out.

9.	 There are several ways to figure out whether a member has the Documentation custom at-
tribute, and the following code shows one of them. Modify the code for the inner loop in the
previous step so that it looks like this:

for each (Object ^att in atts)
{
 Console::WriteLine(" attribute is {0}", att->ToString());
 DocumentationAttribute ^da =
 dynamic_cast<DocumentationAttribute^>(att);
 if (da != nullptr)
 {
 Console::WriteLine("Doc attribute: {0}", da->Text);
 }
}

472   Microsoft Visual C++/CLI Step by Step

The loop first uses dynamic_cast to cast the current attribute as a DocumentationAttrib-
ute handle. If that returns a non-null value, you know that the cast worked, and so you can
retrieve the Text.

10.	 Build and run the application.

You should see console output similar to that shown in the screen shot that follows, with a list-
ing of the attributes present on class members and a showing of documentation text values.

Quick reference

To Do this

Modify the assembly-level attributes in a class. Edit the entries in the AssemblyInfo.cpp file that is gener-
ated for all C++/CLI projects in Visual Studio 2012.

Find out about the standard attributes of a type. Use the Attributes property on a Type object that repre-
sents the type, and use the bitwise AND operator (&) to
compare the value with members of the TypeAttributes
enumeration. For example:

if ((t->Attributes & TypeAttributes::Public) ==
 TypeAttributes::Public)

Create a custom attribute. Create a class to represent an attribute, and use the
AttributeUsage attribute to control where your attribute
can be applied. For example:

[AttributeUsage(AttributeTargets::Method)] public
ref class MyAttribute { ... };

Represent mandatory parameters for a custom attribute. Add arguments to the class constructor or constructors
plus read-only properties to give access to the values.

Represent optional parameters for a custom attribute. Add a property to represent each optional parameter.

	 Chapter 23  Attributes and reflection    473

To Do this

Find out which custom attributes are attached to a class. Create a Type object and use its GetCustomAttributes
method to retrieve an array of objects representing the
attributes attached to the class. For example:

Type ^tt = myObject->GetType();
array<Object^> ^atts =
 tt->GetCustomAttributes(true);

Find out which custom attributes are attached to a class
member.

Create a Type object and use its GetMembers method to
retrieve an array of MemberInfo objects representing the
class members. Then call GetCustomAttributes on each
MemberInfo object. For example:

Type ^tt = myObject->GetType();
array<MemberInfo^> ^mi = tt->GetMembers();
for each(MemberInfo ^m in mi) {
 array<Object^> ^atts =
 m->GetCustomAttributes(true);
 if (atts->Length > 0) {
 // Do something
 }
}

		 475

C H A P T E R 2 4

Living with COM

After completing this chapter, you will be able to:

■■ Describe how you can use Component Object Model (COM) objects from .NET projects.

■■ Use COM objects through early and late binding.

■■ Use ActiveX controls in Windows Forms projects.

■■ Expose .NET objects as COM objects.

Although the types provided in the Microsoft .NET Framework are sufficient for the vast major-
ity of applications, sometimes you’ll need to interact with existing components, particularly

COM components and ActiveX controls. This chapter shows you how the worlds of .NET and COM
can interoperate, making it possible for you to take advantage of the best use of new and existing
technologies.

Many people assumed that COM was dead when .NET arrived on the scene, and it is undeniable
that .NET provides a better solution for creating a lot of component-based solutions. If you program
in C++, though, it is still worth knowing about COM for two main reasons.

First, there is a lot of COM code out there, in the form of ActiveX controls and lower-level com-
ponents, which is not going to go away. In fact, there are still some features of Windows that aren’t
wrapped by .NET for which you need to use COM to access.

The second, and perhaps more interesting reason, is that the Windows RT APIs are COM based. If
you want to get the maximum performance out of Windows RT code (for example, if you’re writing
games in C++), you’ll want to use COM.

Note  This chapter assumes that you know what COM objects are and something about
how to use them outside the .NET world. If terms such as GUID, HRESULT, IUnknown,
IDispatch, and type library don’t mean anything to you, you should learn more about COM
before proceeding with this chapter.

476   Microsoft Visual C++/CLI Step by Step

COM components and the COM Interop

The designers of the .NET Framework recognized that even though the framework is easier to use and
more flexible than COM for many applications, it doesn’t totally replace COM. For this reason, they
developed the COM Interop facility so that .NET and COM objects can interact.

As you’ll see shortly, it is easy to use a COM object from .NET code, and this gives .NET developers
access to hundreds of existing COM objects. It is also possible to use a .NET object from COM code,
although I’d expect this to be a less common occurrence.

Using COM components from .NET code

To use a COM object from .NET code, you first create a Runtime Callable Wrapper (RCW). You need
the RCW because of several major differences between COM and .NET, which are summarized in the
following table:

COM .NET

Clients must manage the lifetimes of the COM objects
they create.

The Common Language Runtime (CLR) manages the life-
time of .NET objects.

Clients use QueryInterface or browse the object’s type
information to find out whether a particular interface is
supported.

Clients can use reflection to query an object.

COM objects are accessed through raw pointers and are
therefore fixed in memory.

.NET objects are accessed through references and can be
moved around by the CLR for performance reasons.

Wrapper classes are needed to bridge these differences so a COM object can appear as a .NET
object, and vice versa.

How do RCWs work?
The wrapper takes the form of a proxy class that does all the work of creating and talking to the COM
object, so you can use COM objects just as if they were .NET objects. You can see how this works in
the diagram that follows. The RCW does all the housekeeping by interacting with the Windows Reg-
istry, creating the object, forwarding calls to the object, and managing its lifetime. The primary goal
of the RCW is to hide the complexity of COM objects from .NET programmers; in some cases, .NET
programmers might not even know they are using a COM object.

	 Chapter 24  Living with COM    477

The wrapper class maintains a cache of interface pointers on the object it is using and releases
these pointers when the object is no longer needed. The RCW itself is governed by the usual .NET
garbage-collection rules because it is a managed object.

Because data types often differ in the .NET and COM worlds, the RCW performs standard mar-
shaling so that both sides can use data types with which they are familiar. For example, when passing
string data through an RCW, the .NET side works with String objects, but the COM side will probably
use its own BSTR type; the RCW automatically converts between the two as necessary.

If you’ve used COM objects from C++, you’re aware that COM objects implement several standard
interfaces—such as IUnknown and IDispatch—that COM client programmers have to know about.
The RCW simplifies the process of using COM objects by automatically handling many of the standard
interfaces, as listed in the following table:

Interface Description

IUnknown The RCW uses IUnknown for object identity check-
ing, type coercion via QueryInterface, and lifetime
management.

IDispatch Used for late binding to COM objects by using reflection.

IErrorInfo Used for providing error information.

IProvideClassInfo If the COM object being wrapped implements this inter-
face, the RCW uses it to provide better type identity.

IConnectionPoint and IConnectionPointContainer If the COM object uses connection points, the RCW ex-
poses them to .NET clients as delegate-style events.

IDispatchEx If the COM object implements IDispatchEx, the RCW ex-
poses and implements the .NET IExpando interface.

IEnumVARIANT The RCW enables COM types that expose this interface to
be treated as .NET collections.

Creating and using RCWs
You can create RCW classes in two ways:

■■ If you’re using Microsoft Visual Studio 2012, you can use a wizard to create the RCW for you.

■■ If you’re compiling C++/CLI code from the command line, you can use the .NET Framework
tool called tlbimp.exe (for Type Library Importer) to read a COM type library and create a
wrapper class based on the information it finds.

The exercise that follows shows you how to use Visual Studio to create a wrapper for a COM object
and then use the object.

478   Microsoft Visual C++/CLI Step by Step

Note  I’ve created a simple COM object for use in this exercise called TempConverter. It
implements simple temperature conversion functionality between Fahrenheit and Celsius.
You’ll find the source and executable for the TempConverter project, plus a ReadMe.txt file
with directions for installing it, in this book’s sample files. Be sure TempConverter is installed
before starting this exercise.

1.	 Start Visual Studio 2012 and create a new CLR Console Application project named ComWrapper.

2.	 On the Project menu, click ComWrapper Properties to open the Project Properties dialog box.
Select Common Properties, and then, in the pane on the left, click Frameworks And References,
and then click the Add New Reference button.

3.	 In the Add Reference dialog box that opens, in the pane on the left, choose the COM entry.

It might take a few seconds to populate the list box with details of the COM components
registered on your system.

4.	 Browse the list to find the entry for the TempConverterLib component. Click to the left of this
entry to add a check mark and then click OK.

5.	 You will see that a new entry for TempConverterLib has been added to the project’s list of
references.

	 Chapter 24  Living with COM    479

6.	 Open Windows Explorer and look in the project’s Interop directory. You will see that it con-
tains a file called Interop.TempConverterLib.1.0.dll, which contains the RCW assembly. These
files are always named Interop.XXX.YYY.dll, where XXX and YYY are the name and version of
the COM component to which the RCW refers.

7.	 Open the IL disassembler tool (ISDASM) and use it to examine Interop.TempConverter.1.0.dll.

The shield-like symbol with the red top represents a namespace, so the namespace you need
to import is TempConverterLib. You can see that the assembly contains three types. Converter
and IConverter represent the original COM co-class and interface definitions, respectively;
their symbol is marked with an I (a capital “i”) to show that they are interfaces. ConverterClass
is a real type, so its symbol doesn’t contain the I. The RCW is produced by the tlbimp tool.

8.	 To deduce the name of the wrapper class without using ILDASM, you take the name of the
COM co-class and append Class.

480   Microsoft Visual C++/CLI Step by Step

9.	 Add a using directive to your code to make it easier to reference the RCW.

using namespace TempConverterLib;

10.	 Add code to create a wrapper object, and use it to call methods on the COM object, as shown
in the following:

int main(array<String^>^ args)
{
 Console::WriteLine("COM Interop Sample");

 // Create a COM object
 ConverterClass ^conv = gcnew ConverterClass();

 // Call a conversion method and print the result
 double d = conv->ConvertC2F(27.0);
 Console::WriteLine("27C is {0}F", d);

 return 0;
}

Observe how the wrapper is created just like any other managed object, and methods are
called on it in exactly the same way as normal. There’s no way to determine from this code
that you’re using a COM object, and the wrapper performs all the lifetime management for
you.

11.	 Build and run the application, checking that the output is what you expect.

Handling COM errors
You know that COM methods return status and error information by using 32-bit HRESULTs. The
RCW converts all error HRESULTs into exceptions that you can catch in your code. The test Converter
project returns an error if the conversion methods are passed any values less than –273C or –459˚F
because temperatures less than absolute zero have no meaning. Here’s the COM code:

STDMETHODIMP CConverter::ConvertC2F(double dCelsius, double* dFahr)
{
 if (dFahr == 0) return E_POINTER;

 // Temperatures below -273C are meaningless...
 if (dCelsius < -273.0) return E_INVALIDARG;

 *dFahr = (9/5.0 * dCelsius) + 32;
 return S_OK;
}

This code might return two error HRESULTs. The first, E_POINTER, occurs if the pointer to the result
variable is null, which won’t happen when called by the RCW. The second, E_INVALIDARG, occurs if an
invalid temperature is passed. These are converted to exceptions by the RCW, and as usual, you need
to catch them to prevent your application from terminating. Here’s what you’ll see on the console if
you pass an invalid temperature:

	 Chapter 24  Living with COM    481

You can handle this by adding a try/catch block to the code in the main function:

try
{
 double d = conv->ConvertC2F(-280.0);
 Console::WriteLine("-280C is {0}F", d);
}
catch(Exception ^ex)
{
 Console::WriteLine("Exception from COM object: {0}", ex->Message);
}

Again, build and run the application and check that the output is correct.

Late binding to COM objects
RCWs implement early binding connections to COM objects, because when you have a type library,
you have all the details of what the COM object can do available to you at compile time. If you want
to use a COM object that implements IDispatch, you can also call it at run time, but the process is a
little more complex.

The exercise that follows shows how to use the TempConverter object with late binding. This COM
object was created with a dual interface, so it can be accessed via both early binding and late binding.

1.	 Create a new CLR Console Application project named LateBind.

2.	 Add code to main to get a Type object that represents the COM component. (Consult Chap-
ter 23, “Attributes and reflection,” for more details on the Type class and its uses.)

// Get a type representing the COM object
Guid g = Guid("75F3EDC5-AA71-437A-ACB6-F885C29E50F7");
Type ^t = Type::GetTypeFromCLSID(g);
if (t == nullptr)
{
 Console::WriteLine("Error getting type for TConverter");
 return -1;
}
Console::WriteLine("Got type for TConverter");

The GetTypeFromCLSID static method takes a COM class ID (CLSID) as a Guid object and
creates a Type object to represent the co-class. If there is a problem creating the Type object
because the CLSID can’t be found or because of some other registry-related problem, a null
is returned. Overloads of this function let you specify that an exception be thrown instead of
returning a null, if that suits your code better.

482   Microsoft Visual C++/CLI Step by Step

You can find the CLSID of a component by examining the .idl file that was used when creat-
ing it.

3.	 Use the System::Activator class to create the COM object for you, as demonstrated here:

// Use System::Activator to create an instance
Object ^obj = Activator::CreateInstance(t);

The Activator class creates instances of local or remote objects for you. The reference returned
is a general object reference; you don’t need to cast it to any specific type because this will be
taken care of for you later.

4.	 Build the parameter list before you call a conversion method on the object. This takes the
form of an array of Objects, as shown here:

// Make up the argument list

array<Object^> ^argarray = { 27.0 };

Here, the array contains only one value: the temperature to be converted.

5.	 Call the conversion method dynamically, using the InvokeMember method of the Type class.

// Invoke the method
try
{
 Object ^result = t->InvokeMember("ConvertC2F",
 Reflection::BindingFlags::InvokeMethod, nullptr, obj, argarray);

 double d = Convert::ToDouble(result);
 Console::WriteLine("27C is {0}F", d);
}
catch(Exception ^ex)
{
 Console::WriteLine("Exception from Invoke: ", ex->Message);
}

InvokeMember, as its name implies, dynamically invokes a member of an object. The arguments
supplied to the function are the name of the member to be invoked, the type of operation (in
this case, you’re invoking a method rather than accessing a property or field), a handle to a
Binder object (which you’re not using), a handle to the object on which the operation is to be
invoked, and a handle to the argument array.

If the call works, you’ll be passed back an Object reference representing the result, which is
then converted to the appropriate type by using one of the static methods of the Convert
class.

6.	 Build and run the application, and check that you get the right answer (which is 80.6F).

	 Chapter 24  Living with COM    483

Using .NET components as COM components

In addition to using COM objects from .NET clients, you can use .NET objects in the COM world. The
process for exposing .NET classes as COM objects is complex because interacting with COM at the
C++ level is difficult. For this reason, this section introduces the topic but leaves the practical imple-
mentation of .NET-to-COM code for more advanced texts.

Again, wrapper classes are used, only this time they are called COM Callable Wrappers (CCWs). In
effect, a CCW puts a COM layer onto a .NET object so that the .NET object behaves in exactly the way
a COM object is expected to behave. The process is shown here:

The CCW exposes all the interfaces expected by clients using COM, such as IUnknown and
IDispatch, and it lets the client code manage its lifetime in the normal COM manner.

What must .NET types implement to be used as COM objects?
COM objects have a particular set of characteristics, and .NET types need to follow some rules if
they’re to be exposed as COM objects using COM Interop. Here’s a summary of what the .NET type
must to do:

■■ It must supply a default constructor—one that doesn’t take arguments—because COM
objects are always created uninitialized, and there’s no standard way to pass over initialization
data. For this reason, it must be possible to create .NET objects uninitialized if they’re to be
used as COM objects.

■■ The type’s assembly must be signed with a strong name. See the upcoming sidebar “Names
and signing” for details on strong names and how to use them.

■■ The type’s assembly must be placed where the CLR can find it. See the upcoming sidebar
“Installing assemblies” for more details.

■■ The correct COM-related registry entries must be made for the .NET object. This is done for
you automatically if you’re using Visual Studio.

484   Microsoft Visual C++/CLI Step by Step

Names and signing
Assemblies are normally identified by their name, version number, and possibly locale informa-
tion. This is adequate for private assemblies that will be used only within a single application.
However, it isn’t good enough for those that will be used more widely because two people
could use the same name for their assemblies, resulting in lots of potential for confusion.

To make assemblies unique, they should be given a strong name, which consists of the
text name, version, and locale information, plus a public key and a digital signature. Every key
generated by using Public Key Encryption is unique, so using keys and digital signatures serves
both to provide a unique identifier for an assembly, and a way to verify the assembly owner or
creator.

COM requires that components be uniquely identified, and it uses GUIDs to accomplish this.
.NET strong names fulfill the requirement for unique component identification, and they also
provide information about the component’s originator, which GUIDs do not.

Installing assemblies
Assemblies are typically installed in one of two places. Private assemblies, which are intended
for use by a single application, can be placed in the directory where the executable resides
or any directory directly underneath. Shared assemblies are installed into the Global Assem-
bly Cache (GAC), which is a per-computer repository for assemblies that need to be shared.
You don’t manually copy assembly files into the GAC; you use the tools provided by the .NET
Framework for managing the cache (such as gacutil.exe).

Assemblies must reside in one of these two locations because they are where the CLR looks
for them when it needs to load them at run time.

	 Chapter 24  Living with COM    485

Quick reference

To Do this

Use a COM object from .NET code. If you’re using Visual Studio 2012, use the Properties
dialog box to add a reference to the COM component. If
you’re compiling from the command line, use the tlbimp.
exe tool to generate an RCW for the COM object, and
then reference the wrapper in your code as you would
any other .NET class.

Use a COM object via late binding. Use the static GetTypeFromProgID or GetTypeFromCLSID
methods of the Type class to generate a Type object rep-
resenting the COM object. Then, use the CreateInstance
static method on the System::Activator class to create an
instance of the object. Finally, use InvokeMember on the
Type object to invoke your chosen member.

Use a .NET component in a COM project. Create a CCW.

	 487

<> syntax,  207
%x descriptor,  422

A
Abs function,  169
Abstract attribute,  469
abstract classes

and sealed classes,  137
overview,  130–131

Account class,  14
in bank example,  238–240

AddAccount method,  240
Add function,  221
addition operator (+),  30
Add method

in bank example,  240–241
Add New Item dialog box,  107
Add New Reference button,  461
add_OnFirstEvent method,  256
addresses, WCF,  355
Add Service dialog box,  364
AddServiceEndpoint,  363
ADO.NET

assemblies,  336
connected application, creating

connecting to database,  337–341
creating and executing command,  340–341
executing command that modifies data,  341–342
executing queries and processing results,  342–

343
overview,  336–337

data providers,  334–335
disconnected application, creating,  344–345
disconnected operation using DataSet,  345–350
namespaces,  335

Index

Symbols
+ (addition operator),  30
& (ampersand character),  175
& (AND operator),  296
&& (AND operator),  31
= (assignment operator),  26
* (asterisk) symbol,  438
^ (caret) symbol,  391
~ (complement operator),  32
%d descriptor,  422
/ (division operator),  30
. (dot operator),  20
:: (double-colon syntax),  79
= (equal sign),  236, 254
#include directive,  439
#include statements,  107
__int8 type,  24
__int16 type,  24
__int32 type,  24
__int64 type,  24
<< (left-shift operator),  32
<= (less-than-or-equal-to) condition,  199
% (modulus operator),  30
* (multiplication operator),  30
! (NOT operator),  31
-= operator,  252, 254
-> operator,  83
+ operator,  252
+= operator,  251, 254
-> (pointer operator),  28
#pragma once directive,  125
#pragma once line,  240
>> (right-shift operator),  32
:: (scope resolution operator),  269
[] (square brackets),  267
- (subtraction operator),  30

Age property

488   Index

overview,  334–336
quick reference,  350, 368

Age property,  232
aggregate initializer,  202
algorithms,  226
All Apps charm,  378
ampersand character (&),  175
AND operator (&),  296
AND operator (&&),  31
Animal class,  16
AnsiClass attribute,  469
API (application programming interface),

Windows,  265
AppBarButton style,  427
app bars

AppBar control,  383
in calculator example,  425–428

AppendAllLines method,  292
AppendAllText method,  292
AppendChild method,  324, 326
AppendText method,  292, 293
App.g.cpp,  380
App.g.h,  380
application programming interface (API),

Windows,  265
Application UI tab,  412
ArgumentException,  222, 232, 239
ArithmeticButtons_Click method,  404, 406
ArithmeticException,  184
arithmetic operators,  30–31

overloading,  161–162
arity,  161
array keyword,  207
Array::Reverse method,  217
arrays

managed arrays
and reference types,  208–210
initializing,  208
multidimensional,  211
overview,  207–208
using for each loop with,  210–211

native
dynamic allocation of,  203–205
initializing,  202
multidimensional,  202–203
overview,  197–199
passing to functions,  200–202

overview,  28
System::Array class

basic operations using,  213–215

copying elements,  215
overview,  212
searching,  216–217
sorting,  217–218
using enumerators with,  218–219

Array::Sort method,  217
AsReadOnly method,  212
assemblies

ADO.NET,  336
.NET,  266

AssemblyCompanyAttribute,  267, 268
AssemblyInfo.cpp file

predefined attributes,  457–458
assembly linker,  6
assembly manifest,  266
Assembly property,  468
AssemblyQualifiedName property,  468
Assets folder,  379
assigning variables,  26–27
assignment conversions,  26
assignment operator (=),  26, 30
asterisk (*) symbol,  438
attached properties,  386–387
AttributeCount property,  307, 315
Attribute node type,  309
attributes

and metadata
overview,  453–454
using ILDASM,  454–457

defining custom
creating,  463–467
design criteria for attribute classes,  463–464
overview,  461–463
properties for,  463–464

predefined attributes
AssemblyInfo.cpp file,  457–458
classes for,  458–461
overview,  457

using reflection to obtain
accessing custom attribute data,  470–472
accessing standard attributes,  469
overview,  467–468
Type class,  467–469

Attributes property,  291, 323, 326, 468
AttributeTargets enumeration,  464
AttributeUsage attribute,  462, 464
AttributeUsageAttribute class,  458, 462
AutoClass attribute,  469
auto_gcroot type,  440
auto-implemented properties,  233

	 CCWs (COM Callable Wrappers)

	 Index   489

automatic layout,  449
Average function,  53

B
backing variable,  233
Balance property,  241
BankAccount class,  123, 124, 130, 132, 136
bank example

adding Account class,  238–239
Bank class

adding accounts to,  240–243
implementing,  236–238

overview,  236
base addresses,  355
BaseButtons_Click method,  418
base classes,  126–129
BaseStream property,  298, 302, 318
BaseType property,  468
base variable,  419
BasicHttpBinding,  355, 358
behavior of Windows Store apps,  373
behaviors, WCF,  358–359
Berkeley Sockets protocol,  275
BestFitMapping field,  447
binary I/O

BinaryReader class,  299–304
BinaryWriter class,  298
overview,  298

binary operator,  162
BinaryReader class,  274, 282, 299–303
BinarySearch method,  212
BinaryWriter class,  274, 282, 298
binding, WCF,  355
bitwise operators,  32–33
blocking,  283
Boolean type,  271
Boolean value type,  145
bool type,  24
Border control,  383
BorderThickness property,  399
BottomAppBar element,  428
boxing  443

unboxing,  443–444
boxing process,  171
break keyword,  73
breakpoints,  47
BufferedStream class,  282
buffer overrun,  200

Button control,  383
Button element,  376
Byte type,  271
Byte value type,  144

C
Cached File Updater contract, Windows 8,  429
calculator example

adding tile,  412–415
app bars,  425–428
arithmetic buttons,  403–404
getting number from button,  404–405, 407–408
handling different number bases

adding buttons for,  417–418
changing base,  418–421
converting string in display,  421–425

handling number input,  401–402
laying out number buttons,  398–401
overview,  397–398
performing calculations,  408–409
remembering operations,  406
sharing in

contracts and charms,  428–429
DataPackage class,  430
handling requests,  431–432
implementing,  429–430
overview,  428

testing,  410–412
Calendar Assistant application,  61
CallingConvention field,  447, 448
calling functions,  45–47
CallMe method,  261
CanDebit method,  123, 133, 134
Canvas control,  388
Capacity property,  220
caret (̂) symbol,  391
casting process,  26
cast operator, overview,  33–34
catch block,  347

handling exceptions using,  180–182, 189
C++/CLI

defined,  3
Hello World example,  4
identifiers in, overview,  5–6
keywords in, overview,  5–6
main function in, overview,  4–5

CCWs (COM Callable Wrappers),  483

CDATA node type

490   Index

CDATA node type,  309
charms

in calculator example,  428–429
in Windows Store apps,  374

CharSet field,  447, 448
Char type,  24, 271
Char value type,  145
CheckBox control,  384
CheckCharacters property,  310
CheckingAccount class,  15
ChildNodes property,  323, 326
Circle class,  236
Class attribute,  469
classes

abstract classes,  130–131
base classes,  126–129
class-wide members

data members,  88–89
member functions,  90–91
overview,  87–88
static constructors,  92–93

concrete classes,  130–131
constants in

class-wide constants,  93–94
instance constants,  94–95
overview,  93

constructors
defining,  84–86
member initialization lists,  86–87

creating objects,  83–84
for custom attributes,  463–464
derived classes,  129–130
and finalizers,  106
in header files,  79–80
in source files,  81–82
in object-oriented programming,  16
object relationships

creating LoyaltyScheme class,  95–96
creating LoyaltyScheme objects,  97–100
implementing LoyaltyScheme class,  96–97
overview,  95–96
testing example application,  100

organizing,  78–79
overriding member functions,  131–136
for predefined attributes,  458–461
protected access,  136–137
sealed classes

and abstract classes,  137
overview,  137

vs. structures,  149–150
in Windows RT,  391–392

class keyword,  20
class library, .NET,  265
class members,  77
class-wide constants,  93–94
class-wide members

data members,  88–89
member functions,  90–91
overview,  87–88
static constructors,  92–93

ClearButton_Click method,  402
Clear method,  212
clearOnNextKey variable,  409
Clone method,  212, 324, 326
CloneNode method,  324, 326
Close method,  283, 287, 298, 299, 308, 318
CLR (Common Language Runtime),  20, 263–264,

336, 437, 454
CLS (Common Language Specification),  160, 265,

298
CLSCompliantAttribute class,  458
CLS-compliant operators, overloading,  166–167
code-behind files,  379, 382
code reuse, and inheritance,  122
collections

List<T> class, overview,  219–221
overview,  219
SortedList<K,V> class, overview,  222–223

Collections interfaces,  273–274
Collections namespaces,  272–273
ColumnDefinition element,  386
Column property,  387
Combine method,  250
ComboBox control,  384
COM Callable Wrappers (CCWs),  483
COM (Component Object Model),  276

overview,  475–476
using from .NET code

and RCWs,  476–477
creating RCWs,  477–480
handling errors,  480–481
late binding to COM objects,  481–482
overview,  476

using .NET components as COM
components,  483–485

CommandText property,  340
Comment node type,  309

	 data contracts

	 Index   491

Common Language Runtime (CLR),  20, 263–264,
336, 437, 454

Common Language Specification (CLS),  160, 298
Compare method,  222
CompareTo method,  218, 222
compiling source files,  9–10
complement operator (~),  32
Component Object Model (COM),  276.  See COM
concrete classes,  130–131
ConditionalAttribute class,  458
ConfigurationManager class,  339
ConformanceLevel property,  310
connected application, ADO.NET

connecting to database,  337–341
creating and executing command,  340–341
executing command that modifies data,  341–342
executing queries and processing results,  342–

343
overview,  336–337

Connection property,  340
ConnectionStringSettings object,  339
connectionStrings section,  338
connectivity, WCF,  353
Console line,  4
Console::ReadLine function,  44
Console::Write function,  44
constants

in classes
class-wide constants,  93–94
instance constants,  94–95
overview,  93

overview,  28–29
const_cast<> operator,  33
constructors

defining,  84–86
handling exceptions for,  184–185
member initialization lists,  86–87
for structures,  150

ContainsKey method,  223
Contains method,  241
ContainsValue method,  223
Content attribute,  376
content controls,  382
continue keyword,  73
contracts

in calculator example,  428–429
WCF,  356–358
in Windows Store apps,  374

controls, in XAML,  382–383
Control templates,  381

conversion operator,  164
ConverterClass,  479
converting constructors,  164
ConvertOutputString function,  423
ConvertTextToInt function,  407, 421
Convert::ToInt32 function,  44
copy constructors, overview,  113–116
Copy method,  212, 215, 292
CopyTo method,  212, 293
Count property,  220
count variable,  289
CreateAttribute method,  324
CreateCDataSection method,  324
CreateComment method,  324
CreateDefaultAttribute method,  324
CreateDirectory method,  290
CreateDocumentType method,  324
CreateElement method,  324
CreateEntityReference method,  324
Create method,  291–293, 306, 308
CreateNavigator method,  324, 326
CreateNode method,  324
CreateProcessingInstruction method,  324
CreateSubdirectory method,  291
CreateText method,  292, 293
CreateTextNode method,  324
CreateWhitespace method,  324
CreateXmlDeclaration method,  324
CreationTime property,  291, 293
CreditCardAccount class,  78
CTS (Common Type System),  264
Cube function,  249
CurrentAccount class,  123, 126–127, 129–130
CurrentAccount.cpp project,  128
CurrentAccount header file,  129
Current property,  210, 218
custom attributes

creating,  463–467
design criteria for attribute classes,  463–464
obtaining data using reflection,  470–472
overview,  461–463
properties for,  463–464

D
data adapter,  344
DataColumn class,  344
DataContract class,  357
data contracts,  356

data hiding

492   Index

data hiding,  14
data members, class-wide,  88–89
Data namespaces,  276–277
DataPackage class, in calculator example,  430
data providers, ADO.NET,  334–335
DataRow class,  344
DataSet class, disconnected operation using, 

344–350
DataTransferManager,  431
data types, for variables,  23–24
Date structure,  150, 152
DateTime class,  234
DbConnection class,  336
DbDataAdapter class,  344
DbProviderFactory class,  346
DCOM (Distributed Component Object Model),  352
DebuggableAttribute class,  458
DebuggerHiddenAttribute class,  458
DebuggerStepThroughAttribute class,  458
debugging, stepping through application,  47–51
Debug toolbar,  49
declarative UI layout,  381
declaring variables

multiple,  26
overview,  25

decrement operators, overloading,  171–172
DefaultAttribute,  395
default branch,  66
default values, for function prototypes,  40
delegate keyword,  247, 250
delegates

defining,  247
implementing

calling non-static member functions by using
delegates,  249

calling static member functions by using
delegates,  248–249

delegates that return result,  252–253
overview,  247
using multicast delegates,  249–252

overview,  245–246
purpose of,  246–247

DeleteCommand,  345
delete method

for arrays,  204
overview,  109

Delete method,  290, 291, 292, 293
Depth property,  307
deque type, STL/CLR,  226
derived classes,  129–130

destructors
overview,  105–106
using,  109–110

Diagnostics namespace,  274
Dialog class,  265
Dictionary<K,V> class,  219
directories, getting information about,  290–297
Directory class,  274, 282
DirectoryInfo class,  274, 282, 290–291
DirectoryName property,  293
Directory property,  293
DisplayDate function,  59
Dispose method,  283, 287, 298–299, 308
Distributed Component Object Model (DCOM),  352
distributed systems, WCF,  352
DivideByZeroException,  183
division operator (/),  30
DLL (Dynamic-Link Library),  192, 365–368, 444
DllImport attribute,  446
DllImportAttribute class,  447–448
DOB member,  151–152
Documentation attribute,  466
DocumentationAttribute class,  464, 472
DocumentElement property,  323
DocumentFragment node type,  309
Document node type,  309
Document Object Model (DOM),  307
DocumentType node type,  309
DocumentType property,  323
do keyword,  72
DOM (Document Object Model),  307
dot operator (.),  20
double-colon syntax (::),  79
Double type,  24, 271
Double value type,  144
do-while loops, overview,  71–73
DtdProcessing property,  310
duplex operation,  358
dynamic allocation, of arrays,  203–205
dynamic_cast,  170, 444
dynamic_cast<> operator,  33
dynamic invocation,  467
Dynamic-Link Library (DLL,  192, 444

E
for each loop

using with arrays,  210–211
EarnPointsOnAmount function,  97

	 files

	 Index   493

EF (Entity Framework),  276
E_INVALIDARG error,  480
Element node type,  309
elements in arrays, copying,  215
EnableBinaryButtons method,  420
EnableDecimalButtons method,  420
EnableHexButtons method,  420
encapsulation, in object-oriented programming, 

14–15
Encoding property,  307
EndElement node type,  309
EndEntity node type,  309
EndPointAddress class,  362
endpoints, WCF,  353–354
EntityClient data provider,  334
Entity Framework (EF),  276
Entity node type,  309
EntityReference node type,  309
EntryPoint field,  447–448
EnumerateDirectories method,  290–291
EnumerateFiles method,  290–291
EnumerateFileSystemEntries method,  290–291
enumerations

creating,  153–154
memory usage,  156
using in programs,  156

enumerators, using with arrays,  218–219
EOF property,  307
E_POINTER eror,  480
EqualsButton_Click method,  407, 425
Equals function, overloading,  169–171
equal sign (=),  236
Equals method,  74, 471
errNo field,  190
error handling, using COM components from

.NET,  480–481
Error List window,  10
errors, in properties,  232
EventArgs object,  260
event handling, in XAML,  389
event keyword,  255
events

event receiver,  256–258
event source class,  254–256
overview,  253–254
quick reference,  262
standard,  259–261
System::EventHandler delegate and,  259–261

EvtRcv class,  257
EvtSrc class,  255

ExactSpelling field,  448
exceptions

and safe_cast keyword,  191–192
creating,  189–191
Exception class properties,  182–183
handling

catch block,  189
Exception class properties,  182–183
exception hierarchy,  184
finally block,  188
try/catch blocks,  180–182
with constructors,  184–185

in mixed-language programming,  192–195
nesting,  185–188
overview,  175–178
rethrowing,  185–188
throwing,  178–180
types of,  178

executable programs
compiling source files,  6, 9–10
creating project,  8–9
running program,  7, 11
source files for,  9

ExecuteNonQuery method,  337, 341
ExecuteReader method,  337, 342
ExecuteScalar method,  337, 340
Exists method,  212, 288, 290, 292
Exists property,  291, 293
explicit layout,  449
eXtensible Markup Language.  See XML
Extensible Stylesheet Language Transformations

(XSLT),  306
Extensible Stylesheet Language (XSL),  276
Extension property,  291

F
fall-through, using in switch statement,  67–68
fault contracts,  356
FieldOffsetAttribute class,  449
FIFO (first in, first out),  226
FileAccess enumeration,  286
FileAttributes class,  296
File class,  274, 282, 288
FileInfo class,  274, 282
FileMode enumeration,  286
File Picker contract, Windows 8,  429
files.  See also binary I/O; See also text I/O

getting information about,  290–297
quick reference,  303–304

FileShare enumeration

494   Index

FileShare enumeration,  286
FileStream class,  274, 282, 286–287
file structure, for Windows Store apps,  379–380
FileSystemInfo class,  274, 282
FileSystemWatcher class,  274, 282
FillBuffer method,  299
finalAmount variable,  50
finalizers

overview,  106
using,  108–109

finally block,  347
handling exceptions using,  188

FindAll method,  212
FindLast method,  212
Find method,  212
FirstChild property,  323, 326
FirstEventHandler delegate,  255
first in, first out (FIFO),  226
FlagsAttribute,  395
FlagsAttribute class,  458
FlipView control,  384
floating-point types,  272
floating-point values,  169
float type,  24
flow control statements

if statement
multiway tests,  62–64
nested tests,  64–65
one-way tests,  57–61
overview,  57
two-way tests,  61–62

loop statements
do-while loops,  71–73
for loops,  70–71
overview,  68
unconditional jumps in,  73–74
while loops,  68–70

switch statement
overview,  65–67
using fall-through in,  67–68

FlushAsync method,  283
Flush method,  283, 298, 318
FontSize property,  399
for-each loop,  68
ForEach method,  212
Foreground property,  403
for loops, overview,  70–71
Format member,  154
Formatting property,  318, 320
forms,  370

FromBinary function,  422
FullName property,  291, 293, 468
fully qualified name,  269
func function,  180
function header,  41
Function keyword,  38
functions

calling,  45–47
function bodies

defining,  41–42
overview,  41
parameters in,  42–43
return type,  43–45

function prototypes
declaring,  38–39
default values for,  40
defined,  38
parameters in,  39
return type,  39–40

global scope,  51–53
local scope,  51–53
non-static member functions, calling by using

delegates,  249
overloading,  53–55
overriding,  131–136
passing arrays to,  200–202
static member functions, calling by using

delegates,  248–249

G
GAC (Global Assembly Cache),  484
garbage collector,  103–104
GCHandle::Alloc method,  438
GCHandle type, and unmanaged code,  438–441
gcnew operator,  27, 28, 110, 143, 147, 208
gcroot variable,  440
GDI32.dll,  445
generations,  104
generic keyword,  206, 392
generics, in Windows RT,  392
generic types

and templates
overview,  224
STL/CLR library,  224–227

overview,  205–206
Geometry.cpp file,  117
GetAccountNumber function,  82
GetAttribute method,  308
GetAttributes method,  292, 296

	 IDE (integrated development environment)

	 Index   495

GetConstructor method,  468
GetConstructors method,  468
GetCreationTime method,  290, 292
GetCurrentDirectory method,  290
GetCustomAttribute method,  470
GetCustomAttributes method,  470, 471
get_date function,  229
GetDay function,  59
GetDirectories function,  297
GetDirectories method,  290, 291
GetDirectoryRoot method,  290
GetElementById method,  324
GetElementsByTagName method,  324
GetEnumerator method,  212, 218, 324, 326
GetEvent method,  468
GetEvents method,  468
GetField method,  468
GetFields method,  468
GetFiles method,  290, 291
GetFileSystemEntries method,  290
GetFileSystemInfos method,  291
get function,  161
GetHashCode method,  171, 471
GetInterestRate function,  87
GetInterfaceMap method,  468
GetInterface method,  468
GetInterfaces method,  468
GetInvocationList function,  253
GetLastAccessTime method,  290, 292
GetLastWriteTime method,  290, 292
GetLength method,  212, 214
GetLogicalDrives method,  290
GetLowerBound method,  212, 214
GetMember method,  468
GetMembers method,  468
get method,  234
GetMethod method,  468
GetMethods method,  468
GetMonth function,  59
GetNamespaceOfPrefix method,  326
GetNumberOfAccounts function,  90
GetParent method,  290
GetPrefixOfNamespace method,  326
GetProperties method,  469
GetProperty method,  469
GetSystemPowerStatus function,  449, 450
getter,  231
GetTypeFromCLSID method,  481
GetType method,  469, 470, 471
GetUpperBound method,  213, 214

getVal function,  162, 164
getValue function,  440
GetValue method,  213
GetYear function,  58
Global Assembly Cache (GAC),  484
global scope, overview,  51–53
global variables,  52
green and blue stacks,  372–373
Grid control,  375–376
GridView control,  384

H
handles

to objects,  118–119
overview,  27–28

handling exceptions
catch block,  189
with constructors,  184–185
Exception class properties,  182–183
exception hierarchy,  184
finally block,  188
try/catch blocks,  180–182

hardware, and Windows Store apps,  374
HasAttributes property,  307
HasChildNodes property,  323, 326
hashcode,  171
HashSet<T> class,  219, 273
HasSecurity attribute,  469
HasValue property,  307
header files, classes in,  79–80
Hello World example,  4
hierarchy

for exceptions,  184
for inheritance,  123–124

HttpGetEnabled property,  364
HttpRequest class,  277
HttpResponse class,  277
HTTP transport,  354

I
IChannel handle,  362
ICollection<T> interface,  273
IComparable interface,  218
IComparer<T> interface,  273
IConnectionPointContainer interface,  477
IConnectionPoint interface,  477
IDE (integrated development environment),  11

identifiers, overview

496   Index

identifiers, overview,  5–6
IDictionary<K,V> interface,  273
IDispatchEx interface,  477
IDispatch interface,  477
IEnumerable<T> interface,  273
IEnumerator interface,  210
IEnumerator<T> interface,  273
IEnumVARIANT interface,  477
IErrorInfo interface,  477
if statement

multiway tests,  62–64
nested tests,  64–65
one-way tests,  57–61
overview,  57
two-way tests,  61–62

IgnoreComments property,  310
IgnoreProcessingInstructions property,  310
IgnoreWhitespace property,  310
ILDASM,  454–457
ILDASM tool,  264
IL Disassembler tool,  264
IL (Intermediate Language),  375
IList<T> interface,  273
IMathService contract,  361
IMetadataExchange contract,  363
Import attribute,  469
ImportNode method,  324
#include directive,  439
include guard,  360
#include statements,  79, 96
increment operators, overloading,  171–172
Indentation property,  318
IndentChar property,  318
indexed properties

bank example
creating Account class properties,  239–240
implementing to retrieve accounts,  241–244

defined,  230
overview,  236

indexing,  207
IndexOfKey method,  223
IndexOf method,  213, 216
IndexOfValue method,  223
inheritance

abstract classes,  130–131
and code reuse,  122
base classes,  126–129
concrete classes,  130–131
derived classes,  129–130

designing hierarchy for,  123–124
interfaces,  138–139
in object-oriented programming,  15
overriding member functions,  131–136
overview,  121–122
properties and,  235
protected access,  136–137
sealed classes

and abstract classes,  137
overview,  137

substitutability,  123–124
terminology,  122

InitializeComponent method,  406
Initialize method,  213
inline functions,  19
InnerText property,  323, 326
InnerXml property,  323, 326
input/output.  See I/O
input variable,  44
InsertAfter method,  324, 326
InsertBefore method,  324, 326
InsertCommand,  345
Insert function,  221
instance constants,  94–95
instance members,  77
Int16 type,  271
Int16 value type,  144
Int32 type,  271
Int64 type,  271
Int64 value type,  144
integrated development environment (IDE),  11
Interface attribute,  469
interfaces, properties in,  235
interior pointers,  441
Intermediate Language (IL),  375
inter-process communication (IPC),  353
IntPtr type,  271
IntPtr value type,  145
IntPtr::Zero argument,  447
introspection,  467
int type,  18, 24
IntVal class,  161, 163
InvalidCastException,  191
InvalidOperationException,  219
invocation list,  250
InvokeMember method,  469, 482
Invoke method,  248
IOException class,  274, 282

	 LoyaltyScheme class example

	 Index   497

I/O (input/output)
binary I/O,  298

BinaryReader class,  299–303
BinaryWriter class,  298

text I/O
FileStream class,  286–287
overview,  283
TextReader,  287–290
TextWriter,  283–285

IO namespace,  274
IPC (inter-process communication),  353
IPC transport,  354
IProvideClassInfo interface,  477
IReadOnlyCollection<T> interface,  273
IsAbstract property,  468
IsArray property,  468
IsByRef property,  468
IsClass property,  468
IsEmptyElement property,  307
ISet<T> interface,  273
IsFixedSize property,  212
IsInterface property,  468
IsNotPublic property,  468
IsPublic property,  468
IsReadOnly property,  212, 323, 326
IsStartElement method,  308
IsSynchronized property,  212
IsValueType property,  468
Item property,  307, 323, 326
items controls,  382
iterator,  225, 226
IUnknown interface,  477

J
JIT (Just-In-Time) compiler,  264
Just-In-Time (JIT) compiler,  264

K
Kernel32.dll,  445
KeyRoutedEventArgs,  389
KeyValuePair class,  223
keywords, overview,  5–6

L
LastAccessTime property,  291, 293
LastChild property,  323, 326

LastIndexOf method,  213, 216
last in, first out (LIFO),  226
LastWriteTime property,  291, 293
late binding, to COM objects,  481–482
layout

in calculator example,  398–401
in XAML,  384–388

left-shift operator (<<),  32
Length property,  212, 213, 293
less-than-or-equal-to (<=) condition,  199
lifetimes, of objects,  103–105
LIFO (last in, first out),  226
LimitReached event,  260
LineNumberOffset property,  310
LinePositionOffset property,  310
LinkedList<T> class,  219, 273
Linq class,  276
ListBox control,  384
ListBoxItems control,  381
List class,  240, 241
List<T> class,  273

overview,  219–221
list type, STL/CLR,  226
ListView control,  384
literal constant,  28
literal keyword,  93
Live tiles,  415
Load method,  325
LoadXml method,  325
LocalName property,  307, 323, 326
local scope, overview,  51–53
location element,  331
LogAttribute class,  462
logical operators

overloading,  167–169
overview,  31–32

LongLength property,  212
long long type,  24
long type,  24
LookupNamespace method,  308
LookupPrefix method,  318
loop statements

do-while loops,  71–73
for loops,  70–71
overview,  68
unconditional jumps in,  73–74
while loops,  68–70

LoyaltyScheme class example
creating,  95–96
creating objects,  97–100

main function

498   Index

implementing class,  96–97
testing application,  100–101

M
main function,  41, 248

overview,  4–5
main method,  108
MainPage class,  406
MainPage.g.cpp,  380
MainPage.g.h,  380
MakePurchase function,  80, 98
MakeRepayment function,  80
managed arrays

and reference types,  208–209
initializing,  208
multidimensional,  211
overview,  207
using for each loop with,  210–211

managed code
vs. unmanaged code

GCHandle type,  438–441
mixed classes,  437–438
overview,  437

Map type,  394
map type, STL/CLR,  226
MapView type,  394
Margin property,  376
markup extensions,  382
MarshalAsAttribute class,  458
marshaling,  356
Math::Abs function,  169
MathServiceClient class,  368
MaxCharactersInDocument property,  310
MaximumRowsOrColums attribute,  387
MBCS (Multi-Byte Character Set),  405
MClass object,  440
mc variable,  440
member functions, class-wide,  90–91
member initialization lists, in constructors,  86–87
MemoryStream class,  274, 282
memory usage, for enumerations,  156
MEPs (message exchange patterns),  357–358
MessageBox function,  445, 446
Message property, Exception class,  182
metadata

adding to WCF services,  363–365
and attributes

overview,  453–454
using ILDASM,  454–457

.NET,  266–268
in Windows RT,  390

MEX (Metadata Exchange) addresses,  355
MFC (Microsoft Foundation Classes),  370, 405
Microsoft Intermediate Language (MSIL),  229, 375
Microsoft Intermediate Language (MSIL) file,  81
Microsoft-specific data types,  24
mixed classes, and unmanaged code,  437–438
mixed-language programming, exceptions in, 

192–195
mm class,  115
Module property,  468
modulus operator (%),  30
Move method,  290, 292
MoveNext method,  210
MoveToAttribute method,  308
MoveToContentAsync method,  308
MoveToContent method,  308
MoveToElement method,  308, 315
MoveToFirstAttribute method,  308
MoveTo method,  291, 293
MoveToNextAttribute method,  308, 315
MSIL (Microsoft Intermediate Language),  229, 264,

375
MSIL (Microsoft Intermediate Language) file,  81
MSMQ transport,  354
Multi-Byte Character Set (MBCS),  405
multicast delegates,  249–252
multidimensional arrays

managed arrays,  211
native arrays,  202–203

multimap type, STL/CLR,  226
multiplication operator (*),  30
multiset type, STL/CLR,  226

N
named parameters,  463
named pipes,  353
Name property,  291, 293, 307, 323, 326
Namespace property,  468
namespaces

ADO.NET,  335
.NET

Collections interfaces,  273–274
Collections namespaces,  272–273
Data namespaces,  276–277
Diagnostics namespace,  274
IO namespace,  274
Net namespaces,  275

	 object-oriented programming

	 Index   499

overview,  268–269
ServiceModel namespaces,  275
System namespace,  270–273
using in C++ applications,  270–271
Web namespaces,  277–278
Windows namespaces,  275
Xml namespaces,  276

Namespaces property,  318
NamespaceURI property,  307, 323
naming, of variables,  25–26
NaN (not a number),  272
native arrays

dynamic allocation of,  203–205
initializing,  202
multidimensional,  202–203
overview,  197–199
passing to functions,  200–202

negative infinity,  272
nesting

exceptions,  185–188
if statements,  64–65

.NET
using COM components from

and RCWs,  476–477
creating RCWs,  477–480
handling errors,  480–481
late binding to COM objects,  481–482
overview,  476

using .NET components as COM
components,  483–485

.NET Framework
assemblies,  266
class library,  265
CLR (Common Language Runtime),  263–264
CLS (Common Language Specification),  265
CTS (Common Type System),  264
metadata,  266–268
MSIL (Microsoft Intermediate Language),  264
namespaces

Collections interfaces,  273–274
Collections namespaces,  272–273
Data namespaces,  276–277
Diagnostics namespace,  274
IO namespace,  274
Net namespaces,  275
overview,  268–269
ServiceModel namespaces,  275
System namespace,  270–273
using in C++ applications,  270–271
Web namespaces,  277–278

Windows namespaces,  275
Xml namespaces,  276

overview,  263
quick reference,  278
XML and

NET XML namespaces,  306
overview,  305–306
XML processing classes,  306–307

NetMsmqBinding,  355, 358
NetNamedPipeBinding,  355, 358
Net namespaces,  275
NetTcpBinding,  355, 358
new operator,  203
NextSibling property,  323, 326
NodeChanged event,  325
NodeChanging event,  325
NodeInserted event,  325
NodeInserting event,  325
nodelist,  329
NodeRemoved event,  325
NodeRemoving event,  325
NodeType property,  308–309, 324, 326
None node type,  309
NonSerializedAttribute class,  458
non-static member functions, calling by using

delegates,  249
Normalize method,  326
normal pointers,  246
not a number (NaN),  272
Notation node type,  309
NotifyDelegate,  250
NOT operator (!),  31
NotPublic attribute,  469
nullptr keyword,  184
nullptr value,  98
number bases

in calculator example
adding buttons for,  417–418
changing base,  418–421
converting string in display,  421–425

NumericOp function,  247

O
Object Linking and Embedding (OLE),  370
object-oriented programming

advantages of,  16–17
classes in,  16
defined,  13–14

objects

500   Index

encapsulation in,  14–15
example of,  17–22
inheritance in,  15
objects in,  16
polymorphism in,  15–16

objects
and stack semantics

creating objects with,  111–113
overview,  116–118

copy constructors,  113–116
creating,  83–84
destructors

overview,  105–106
using,  109–110

finalizers
overview,  106
using,  108–109

handles to,  118–119
lifetimes of,  103–105
in object-oriented programming,  16
relationships for

creating LoyaltyScheme class,  95–96
creating LoyaltyScheme objects,  97–100
implementing LoyaltyScheme class,  96–97
overview,  95–96
testing example application,  100–101

traditional C++ creation and destruction,  110–
111

obj pointer,  444
Observer class,  261
Obsolete attribute,  460
ObsoleteAttribute class,  458
ODBC data provider,  334
OleDb data provider,  334
OLE (Object Linking and Embedding),  370
one-way messaging,  358
OnNavigatedFrom function,  432
OnNavigatedTo function,  421, 432
op_Addition operator,  166
op_AddressOf operator,  166
op_BitwiseAnd operator,  166
op_BitwiseOr operator,  166
op_Comma operator,  166
op_Decrement operator,  166
op_Division operator,  166
Open method,  292–293
OpenRead method,  292–293
OpenText method,  292–293
OpenWrite method,  292–293
op_Equality operator,  166

operation contracts,  356
operator overloading

and reference types,  172–173
arithmetic operators,  161–162
best practices,  173–174
CLS-compliant operators,  166–167
decrement operators,  171–172
increment operators,  171–172
logical operators

Equals function,  169–170
overview,  167–169

overview,  159
restrictions on,  160
rules for,  161
static operator overloads,  163–166
types needing,  160

operators
arithmetic operators,  30–31
assignment operators,  30
bitwise operators,  32–33
cast operator,  33–34
defined,  30
logical operators,  31–32
precedence of,  34
relational operators,  31–32
ternary operator,  32–33

op_ExclusiveOr operator,  166
op_GreaterThan operator,  167
op_GreaterThanOrEqual operator,  167
op_Increment operator,  167
op_Inequality operator,  167
op_LeftShift operator,  167
op_LessThan operator,  167
op_LessThanOrEqual operator,  167
op_LogicalAnd operator,  167
op_LogicalNot operator,  166
op_LogicalOr operator,  167
op_Modulus operator,  167
op_Multiply operator,  167
op_OnesComplement operator,  166
op_PointerDereference operator,  166
op_RightShift operator,  167
op_Subtraction operator,  167
op_UnaryNegation operator,  166
op_UnaryPlus operator,  166
OracleClient data provider,  334
Orientation property,  384
OR operator,  31–32
OuterXml property,  324, 326
overloaded [] operator,  230

	 ProviderName property

	 Index   501

overloading functions,  53–55
overriding member functions,  131–136
OwnerDocument property,  324, 326

P
Package.appxmanifest file,  379, 412
Page class,  377
Page element,  375
ParamArrayAttribute class,  458
parameters

in function bodies,  42–43
in function prototypes,  39
names for,  39

ParentNode property,  324, 326
Parent property,  291
parsing XML using, XmlReaderSettings class, 

310–314
partial classes,  391
partial keyword,  392
passing structured data,  449–452
Path class,  274, 282
PeekChar method,  299
Peek method,  287
pf function pointer,  246
pinning pointers,  441–442
P/Invoke (Platform Invoke)

calling functions in Win32 API
DllImportAttribute class,  447–448
overview,  444–447
passing structured data,  449–452

Platform::Collections namespace,  394
Platform Invoke (P/Invoke).  See P/Invoke
Platform::Metadata namespace,  394
Platform namespaces, in Windows RT,  394
Play To contract, Windows 8,  429
PNG (Portable Network Graphics) files,  379, 414
pointer operator (->),  28
pointers

interior pointers,  441
overview,  27–28
pinning pointers,  441–442

polymorphism
in object-oriented programming,  15–16

pop_back function,  225
Portable Network Graphics (PNG) files,  379, 414
positional parameters,  463
positive infinity,  272
post-decrement,  171

postfix increment operator expression,  31
post-increment,  171
#pragma once directive,  125
precedence, of operators,  34
precompiled headers,  379
pre-decrement,  171
predefined attributes

AssemblyInfo.cpp file,  457–458
classes for,  458–461
obtaining attribute data using,  469
overview,  457

prefix increment operator expression,  31
Prefix property,  308, 324, 326
pre-increment,  171
PrependChild method,  326
PreserveSig field,  448
PreserveWhitespace property,  324
PreviousSibling property,  323, 326
printArea function,  236
PrintStatement function,  78
private auto ansi,  456
private class,  136
private keyword,  19
ProcessChildNodes function,  330
processFile function,  297
ProcessingInstruction node type,  309
projections,  390
Project Properties dialog box,  338
projects, creating,  8–9
properties

for custom attributes,  463–464
for Exception class,  182–183
indexed

bank example,  236–244
overview,  236

overview,  229–230
quick reference,  244
scalar properties

auto-implemented properties,  233
errors in properties,  232
inheritance and,  235
in interfaces,  235–236
overview,  231–232
read-only and write-only properties,  233–235

of value types,  145
Properties property,  430
Properties tab,  402
property keyword,  231
protected access,  136–137
ProviderName property,  339

proxy, accessing WCF services using

502   Index

proxy, accessing WCF services using,  365–368
Public attribute,  469
public class,  136
public keyword,  18
push_back function,  225

Q
Queue<T> class,  219, 273
queue type, STL/CLR,  226
QuoteChar property,  318

R
RaiseOne function,  259
raise_OnFirstEvent method,  256
RaiseTwo function,  259
Rank property,  212, 213
rateFraction variable,  50
RC (Release Candidate) version,  7
RCWs (Runtime Callable Wrappers)

creating,  477–480
overview,  476–477

Read7BitEncodedInt method,  299
ReadAsync method,  287, 308
ReadAttributeValue method,  308
ReadBlockAsync method,  287
ReadBlock method,  287
ReadBoolean method,  299
ReadByte method,  299
ReadBytes method,  299
ReadChar method,  299
ReadChars method,  299
ReadContentAsAsync method,  308
ReadContentAsInt method,  308
ReadContentAs method,  308
ReadContentAsString method,  308
ReadDecimal method,  299
ReadDouble method,  299
ReadElementContentAsInt method,  308
ReadElementContentAs method,  308
ReadElementString method,  308
ReadEndElement method,  309
Read function,  313
ReadInnerXml method,  308
ReadInt16 method,  299
ReadInt32 method,  299
ReadInt64 method,  299
ReadLine method,  287, 289

Read method,  287, 299, 308
ReadNode method,  325
read-only properties,  233–234, 239
ReadOuterXml method,  308
ReadSByte method,  299
ReadSingle method,  299
ReadStartElement method,  309
ReadState property,  308
ReadString method,  299, 309
ReadToDescendant method,  309
ReadToEndAsync method,  287
ReadToEnd method,  287
ReadToFollowing method,  309
ReadToNextSibling method,  309
ReadUInt16 method,  299
ReadUInt32 method,  299
ReadUInt64 method,  299
RedeemPoints function,  97
refactoring,  407
reference counted objects,  391
Reference Manager dialog box,  193
reference types,  20

and managed arrays,  208–209
and operator overloading,  172–173

ref keyword,  184
reflection

obtaining attribute data using
accessing custom attribute data,  470–472
accessing standard attributes,  469
overview,  467–468
Type class,  467–469

ref new keyword,  391
Refresh method,  293
reinterpret_cast<> operator,  34
relational operators, overview,  31–32
relationships, object

LoyaltyScheme class example
creating,  95–96
creating objects,  97–100
implementing class,  96–97
testing application,  100–101

overview,  95–96
Release Candidate (RC) version,  7
remembering operations, in calculator example,  406
Remote Method Invocation (RMI),  352
remoting,  264
RemoveAccount function,  241
RemoveAll method,  325, 326
RemoveByIndex method,  223
RemoveChild method,  325–326

	 SetHtmlFormat method

	 Index   503

Remove function,  221
RemoveHandler function,  259
Remove method

in bank example,  240–241
manipulating invocation lists using,  250

remove_OnFirstEvent method,  256
RemoveRange function,  221
ReplaceChild method,  325, 327
Replace method,  292, 293
reserved words,  5
Reset function,  409
Reset method,  210
Resize method,  213
resource dictionaries,  381
restrictions, on operator overloading,  160
rethrowing exceptions,  185–188
return keyword,  4, 41
return type

for function bodies,  43–45
for function prototypes,  39–40

Reverse method,  213
rightOperand variable,  408
right-shift operator (>>),  32
RMI (Remote Method Invocation),  352
Root property,  291
RoutedEventArgs class,  389
RowDefinition element,  386
running programs,  7, 11
Runtime Callable Wrappers (RCWs).  See RCWs
RuntimeWrappedException,  192

S
safe_cast,  444
safe_cast keyword, and exceptions,  191–192
safe_cast<> operator,  33
Save method,  325
SavingsAccount class,  15, 123, 126–127, 130
SavingsAccount.cpp project,  129
SavingsAccount header file,  129
SAX (Simple API for XML) API,  307
SayHello method,  456
SByte type,  271
SByte value type,  144
scalar properties

auto-implemented,  233
defined,  230
errors in,  232
inheritance and,  235

in interfaces,  235
read-only and write-only,  233–234

Schema class,  276
SchemaInfo property,  308
Schemas property,  310, 324
scope

global scope,  51–53
local scope,  51–53

scope resolution operator (::),  269
ScrollViewerl control,  384
Sealed attribute,  469
sealed classes

and abstract classes,  137
overview,  137

Search contract, Windows 8,  428
searching, arrays,  216–217
SecondEventHandler delegate,  257
security permissions,  266
Seek method,  298, 302
SeekOrigin enumeration,  302
seek pointer,  302
SEH (Structured Exception Handling),  178
SelectCommand,  345
SelectCommand property,  347
Selected Components pane,  193
SelectNodes method,  325, 327
SelectSingleNode method,  325, 327
sequential layout,  449
Serializable attribute,  469
SerializableAttribute class,  458
Serialization class,  276
ServiceContract attribute,  356
service contracts,  356
ServiceModel namespaces,  275
services

WCF,  352
accessing by using proxy,  365–368
adding metadata to,  363–365
overview,  359–362
writing service client,  361–362

SetAttributes method,  292
SetBitmap method,  430
SetCreationTime method,  290, 292
SetCreditLimit function,  80
SetCurrentDirectory method,  291
SetCursorToArrow line,  112
SetData method,  430
SetDataProvider method,  430
set_date function,  229
SetHtmlFormat method,  430

SetInterestRate function

504   Index

SetInterestRate function,  87
SetLastAccessTime method,  291–292
SetLastError field,  448
SetLastWriteTime method,  291–292
SetName function,  20
SetRtf method,  430
SetStorageItems method,  431
setter,  231
SetText method,  431
Settings contract, Windows 8,  429
Settings property,  308, 318
set type, STL/CLR,  226
SetUri method,  431
SetValue method,  213, 214
Shape class,  235
Share contract, Windows 8,  429
sharing

in calculator example
contracts and charms,  428–429
DataPackage class,  430
handling requests,  431–432
implementing,  429–430
overview,  428

short-circuit evaluation,  32, 60
short type,  24
SignificantWhitespace node type,  309
Simple API for XML (SAX) API,  307
Simple Mail Transfer Protocol (SMTP),  277
Simple Object Access Protocol (SOAP),  277, 306
simplex messaging,  358
single-byte string type,  405
Single type,  271
Single value type,  144
sizeof operator,  201
SkipAsync method,  309
Skip method,  309
SMTP (Simple Mail Transfer Protocol),  277
SOAP (Simple Object Access Protocol),  277, 306
SortedList<K,V> class,  273

overview,  219, 222–223
SortedSet<T> class,  273
sorting, arrays,  217–218
Sort method,  213
Source property, Exception class,  182
SqlClient data provider,  334
SqlServerCe data provider,  334
square brackets [],  267
square function,  248
StackPanel control,  384

stack semantics, and objects
creating objects with,  111–113
overview,  116–118

Stack<T> class,  219, 273
StackTrace property, Exception class,  182
stack type, STL/CLR,  226
StandardStyles.xaml file,  380, 426
Start Without Debugging option,  47, 401
static_cast<double> operator,  33
static_cast<> operator,  33
static constructors, class-wide,  92–93
static keyword,  90
static member functions, calling by using

delegates,  248–249
static operator overloads, overloading,  163–166
stdafx.h file,  107
stepping through application,  47–51
STL/CLR library

concepts behind,  225–227
overview,  224–225

Stop Debugging option, Debug menu,  165
Stream class,  274, 282, 284, 302
StreamReader class,  274, 282
streams,  302
StreamWriter class,  274, 282, 283
String class,  18, 44

overview,  29–30
String^ parameter,  442
StringReader class,  274, 282
strings, in Windows RT,  392–393
StringWriter class,  274, 282
struct keyword,  146
StructLayoutAttribute class,  449, 458
structured data, passing,  449–452
Structured Exception Handling (SEH),  178
structures

constructors for,  150
copying,  152–153
creating,  146–148
overview,  146
using within another,  150–152
vs. classes,  149–150

styles,  381
Sub keyword,  38
substitutability,  123–124
subtraction operator (-),  30
Supports method,  327
switch statement,  313

overview,  65–67
using fall-through in,  67–68

	 ThrowOnUnmappableCharacter field

	 Index   505

swscanf_s function,  404, 409
symbolic constant,  28
Synchronized method,  283, 287
SyncRoot property,  212
syntax, for XAML,  381–382
System::ApplicationException class,  179
System::ArgumentException class,  179
System::ArithmeticException class,  179
System::Array class

basic operations using,  213–214
copying elements,  215
overview,  212
searching,  216–217
sorting,  217–218
using enumerators with,  218–219

System::Collection namespace,  218
System::Collections::Generic namespace,  219
System::Configuration assembly,  345
System::Data::Common namespace,  335
System::Data::EntityClient namespace,  276, 335
System::Data::Linq namespace,  335
System::Data namespace,  335
System::Data::Odbc namespace,  276, 335
System::Data::OleDb namespace,  276, 335
System::Data::OracleClient namespace,  276, 335
System::Data::Services namespace,  335
System::Data::Spatial namespace,  335
System::Data::SqlClient namespace,  276, 335
System::Data::SqlTypes namespace,  335
System::Delegate class,  247
System::Diagnostics namespace,  458
System::DivideByZeroException error,  177
System::Enum class,  153
System::EventHandler delegate, events and,  259–261
System::Exception class,  177, 179
System::GC::Collect static method,  105
System::IndexOutOfRangeException class,  179
System::InvalidCastException class,  179
System::IO namespace,  281–282
System::MemberAccessException class,  179
System::MulticastDelegate class,  247, 249
System namespace

basic types,  271
floating-point types,  272
overview,  270–271

System::NotSupportedException class,  179
System::NullReferenceException class,  179
System::Object class,  169
System::OutOfMemoryException class,  179
SYSTEM_POWER_STATUS structure,  449

System::Reflection namespace,  470
System::Runtime::InteropServices namespace,  437
System::Runtime::Serialization namespace,  303
System::ServiceModel::AddressAccessDenied

Exception,  361
System::ServiceModel assembly,  362
<system.ServiceModel> element,  367
System::String class,  209
System::SystemException class,  179
System::TypeLoadException class,  179
System::ValueType class,  145, 171
System::Web::Mail namespace,  277
System::Web namespace,  277
System::Web::Security namespace,  277
System::Web::Services namespace,  277
System::Web::UI::HtmlControls namespace,  278
System::Web::UI namespace,  277
System::Xml::Linq namespace,  306
System::Xml namespace,  306
System::Xml::Schema namespace,  306, 316
System::Xml::Serialization namespace,  306
System::Xml::XPath namespace,  306
System::Xml::Xsl namespace,  306

T
TCP/IP transport,  354
TempConverterLib component,  478
TempConverter project,  478
templates, and generic types

overview,  224
STL/CLR library

concepts behind,  225–227
overview,  224–225

ternary operator, overview,  32–33
TestAtts class,  466, 471
testing, calculator example,  410–412
Test method,  193
text I/O

FileStream class,  286–287
overview,  283
TextReader,  287–290
TextWriter,  283–286

Text node type,  309
TextReader class,  274, 282, 287–290
TextWriter class,  274, 283–285
throwing exceptions,  178–180
throw keyword,  177
ThrowOnUnmappableCharacter field,  448

tiles, Start Page, calculator example

506   Index

tiles, Start Page, calculator example,  412–415
ToBinary function,  423
Tooltip control,  384
ToString function,  134
ToString method,  291, 293, 469, 471
tracking handles,  27
tracking reference,  114
triggers,  381
TrimToSize function,  222
TrimToSize method,  221
TrueForAll method,  213
try block,  347
try/catch blocks, handling exceptions using,  180–182
TryGetValue method,  223
type casting, operator for,  33–34
Type class, obtaining attribute data using,  467–469
typedefs, overview,  29
TypedEventHandler,  432
type-safe,  121

U
UClass object,  440
UInt16 type,  271
UInt16 value type,  144
UInt32 type,  271
UInt32 value type,  144
UInt64 type,  271
UInt64 value type,  144
UIntPtr type,  271
UI (user interface)

libraries for Windows applications,  372
model for Windows Store apps,  374

UI (user interface) framework,  275
UlnPtr value type,  145
UML (Unified Modeling Language),  123
unboxing,  443–444
unconditional jumps, in loop statements,  73–74
UnderlyingSystemType property,  468
UnicodeClass attribute,  469
Unified Modeling Language (UML),  123
unmanaged code,  264

boxing,  443
interior pointers,  441
pinning pointers,  441–442
unboxing,  443–444
using P/Invoke to call functions in Win32 API

DllImportAttribute class,  447–448
overview,  444–447

passing structured data,  449–452
vs. managed code

GCHandle type,  438–440
mixed classes,  437–438
overview,  437

UpdateCommand,  345
User32.dll,  445
user interface (UI) framework,  275
#using directive,  270

V
ValHandler class,  317
Validate method,  325
ValidationFlags property,  310
ValidationType property,  310
value keyword,  20, 146, 161
Value property,  308, 324, 326
ValueType property,  308
value types

and reference types
overview,  143–144

enumerations
creating,  153–154
memory usage,  156
using in programs,  156

properties of,  145
purpose of,  144–145
structures

constructors for,  150
copying,  152–153
creating,  146–148
overview,  146
using within another,  150–152
vs. classes,  149–150

variables
arrays,  28
assigning values to,  26–27
constants,  28–29
data types for,  23–24
declaring

multiple,  26
overview,  25

defined,  23
handles,  27–28
naming of,  25–26
pointers,  27–28
String class,  29–30
typedefs,  29

	 Windows Store apps

	 Index   507

VariableSizedWrapGrid control,  387
VectorIterator class,  394
Vector type,  394
vector type, STL/CLR,  226
VectorViewIterator class,  394
VectorView type,  394
Vehicle class,  122
versioning,  266
VirtualizingStackPanel control,  385
void keyword,  38

W
W3C DOM,  322
WCF (Windows Communication Foundation)

addresses,  355
behaviors,  358–359
binding,  355
connectivity,  353
contracts,  356–358
defined,  275
distributed systems,  352
endpoints,  353–354
MEPs (message exchange patterns),  357–358
overview,  351
services,  352

accessing by using proxy,  365–368
adding metadata to,  363–365
overview,  359–362
writing service client,  361–362

wchar_t* pointer,  405
wchar_t type,  24
wcstol (Wide Character String To Long) function,  422
Web namespaces,  277–278
web service,  277
Web Service Definition Language (WSDL),  355
Web Service Description Language (WSDL),  306
WeekDay class,  154
while loops, overview,  68–70
white space,  5
Whitespace node type,  309
Wide Character String To Long (wcstol)

function,  422
wide string type,  405
Win32 API,  369–370

calling functions using P/Invoke
DllImportAttribute class,  447–448
overview,  444–447
passing structured data,  449–452

Windows::ApplicationModel.DataTransfer
namespace,  430

Windows::ApplicationModel namespaces,  393
Windows applications

Microsoft Foundation Classes,  370
Win32 API,  369–370
Windows Forms,  370–371
Windows Presentation Foundation,  371

Windows Communication Foundation (WCF),  275
Windows::Data namespaces,  393
Windows::Devices namespaces,  393
Windows Forms,  370–371
Windows::Foundation::Collections namespaces,  393
Windows::Foundation namespaces,  393
Windows::Globalization namespaces,  393
Windows::Graphics namespaces,  393
Windows::Management namespaces,  393
Windows::Media namespaces,  393
WindowsMessageBox function,  448
Windows namespaces,  275
Windows::Networking namespaces,  393
Windows Presentation Foundation,  371
Windows Presentation Foundation (WPF),  275
Windows RT (WinRT).  See WinRT
Windows Runtime Library (WRL),  390
Windows::Security namespaces,  393
Windows::Storage namespaces,  393
Windows Store apps

and Windows applications
Microsoft Foundation Classes,  370
Win32 API,  369–370
Windows Forms,  370–371
Windows Presentation Foundation,  371

calculator example
adding tile,  412–415
app bars,  425–428
arithmetic buttons,  403–404
getting number from button,  404–405,

407–408
handling different number bases,  416–425
handling number input,  401–402
laying out number buttons,  398–401
overview,  397–398
performing calculations,  408–409
remembering operations,  406
sharing in,  428–432
testing,  410–412

choosing UI library,  372
creating,  375–379
file structure for,  379–380

Windows::System namespaces

508   Index

main features
app behavior,  373
contracts and charms,  374
hardware usage,  374
overview,  373
UI model,  374
WinRT APIs,  374

overview,  372–373
Windows RT

classes,  391–392
generics,  392
metadata,  390
overview,  389–390
Platform namespaces,  394–395
strings,  392–393
Windows namespaces,  393

XAML
controls,  382–383
defined,  380–381
event handling,  389
layout controls,  384–388
syntax,  381–382

Windows::System namespaces,  394
Windows::UI namespaces,  394
Windows::UI::XAML namespaces,  394
Windows::Web namespaces,  394
WinRT (Windows RT)

APIs,  374
classes,  391–392
generics,  392
metadata,  390
overview,  389–390
Platform namespaces,  394
strings,  392–393
Windows namespaces,  393

WPF (Windows Presentation Foundation),  275
Write7BitEncodedInt method,  298
WriteAllLines method,  292
WriteAllText method,  292
WriteAsync method,  283
WriteAttributes method,  318
WriteAttributeString method,  318
WriteBase64 method,  318
WriteBinHex method,  318
WriteCData method,  319
WriteCharEntity method,  319
WriteChars method,  319
WriteComment method,  319
WriteContentTo method,  325, 327
WriteDocType method,  319

WriteElementString method,  319
WriteEndAttribute method,  319
WriteEndDocument method,  319
WriteEndElement method,  319
WriteEntityRef method,  319
WriteFullEndElement method,  319
WriteLineAsync method,  283
WriteLine method,  283
WriteLine statement,  108, 111, 162
Write method,  283, 298
WriteName method,  319
WriteNode method,  319
write-only properties,  233–234
WriteProcessingInstruction method,  319
WriteQualifiedName method,  319
WriteRaw method,  319
WriteStartAttribute method,  319
WriteStartDocument method,  319
WriteStartElement method,  319
Write statement,  108
WriteState property,  318
WriteString method,  319
WriteTo method,  325, 327
WriteValue method,  319
WriteWhitespace method,  319
WriteXml method,  348
WRL (Windows Runtime Library),  390
WSDL (Web Service Definition Language),  355
WSDL (Web Service Description Language),  306
WSDualHttpBinding,  355, 358
WSHttpBinding,  355, 358, 360, 362

X
XAML (Extensible Application Markup Language)

controls,  382–383
defined,  380–381
event handling,  389
layout controls,  384–388
project files,  379
syntax,  381–382

XamlTypeInfo.g.h,  380
Xml class,  276
XmlDeclaration node type,  309
XmlDocument class,  322
XML (eXtensible Markup Language)

NET and
NET XML namespaces,  306
overview,  305–306
XML processing classes,  306–307

	 ZIndex property

	 Index   509

parsing using XmlReader
creating XmlReaders,  309–310
handling attributes,  314–315
overview,  307–309
verifying well-formed XML,  314
with validation,  315–317
XmlReaderSettings class,  310–314

quick reference,  332
writing using XmlTextWriter,  318–322
XmlDocument class

overview,  322
W3C DOM and,  322

XmlNode class,  325–332
XmlLang property,  308, 318
Xml namespaces,  276
XmlNode class,  325–332
XmlNodeType enumeration,  309
XmlReader class

parsing XML using
creating XmlReaders,  309–310
handling attributes,  314–315
overview,  307–309
verifying well-formed XML,  314
with validation,  315–317
XmlReaderSettings class,  310–314

XmlResolver property,  310
XmlSpace property,  318
XmlTextReader class,  307
XmlTextWriter class

creating object,  348
writing XML using,  318–322

XmlValidatingReader class,  307
XmlWriter class,  138
x:Name attribute,  381
XPath class,  276
Xsl class,  276
XSL (Extensible Stylesheet Language) processor,  276
XSLT (Extensible Stylesheet Language

Transformations),  306

Z
ZIndex property,  388

About the author

JULIAN TEMPLEMAN is a professional consultant, trainer, and writer. He
has been writing code for nearly 40 years, has been using and teaching C++
for nearly 20 of those, and has been involved with .NET since its first alpha
release in 1998. He is the author or coauthor of 10 programming books, in-
cluding COM Programming with Microsoft .NET. He currently runs a training
and consultancy company in London with his wife, specializing in C++, Java
and .NET programming, and software development methods.

 Now that
you’ve
read the
book...

Was it useful?
Did it teach you what you wanted to learn?
Was there room for improvement?

Let us know at http://aka.ms/tellpress

Your feedback goes directly to the staff at Microsoft Press,
and we read every one of your responses. Thanks in advance!

Tell us what you think!

	Introduction
	Part I: Getting started with C++ .NET
	Chapter 1: Hello C++!
	What is C++/CLI?
	Your first C++/CLI application
	The main function
	C++ keywords and identifiers

	Creating an executable application—theory
	Editing the application source files
	Compiling the source files
	Running and testing the application

	Creating an executable application—practice
	Creating a project
	Editing the C++ source code
	Building the executable
	Executing the application

	Conclusion
	Quick reference

	Chapter 2: Introducing object-oriented programming
	What is object-oriented programming?
	Features of object-oriented programming languages
	Encapsulation
	Inheritance
	Polymorphism

	Classes and objects
	Benefits to the development life cycle
	A simple example
	Quick reference

	Chapter 3: Variables and operators
	What is a variable?
	The fundamental data types
	Declaring a variable
	Variable naming

	Declaring multiple variables
	Assigning values to variables
	Handles and pointers
	Arrays
	Constants
	Typedefs
	The .NET Framework String class
	Operators and expressions
	Assignment operators
	Arithmetic operators
	Relational and logical operators
	Bitwise operators
	The ternary operator
	Type casting
	Operator precedence and associativity

	Quick reference

	Chapter 4: Using functions
	Declaring function prototypes
	Declaring a simple function prototype
	Declaring parameters in a function prototype
	Declaring the return type in a function prototype
	Declaring default values for function parameters
	Defining function bodies
	Calling functions
	Stepping through the application by using debugger
	Understanding local and global scope

	Quick reference

	Chapter 5: Decision and loop statements
	Making decisions by using the if statement
	Performing one-way tests
	Performing two-way tests
	Performing multiway tests
	Performing nested tests

	Making decisions by using the switch Statement
	Defining simple switch statements
	Using fall-through in a switch statement

	Performing loops
	Using while loops
	Using for loops
	Using do-while loops
	Performing unconditional jumps

	Quick reference

	Chapter 6: More about classes and objects
	Organizing classes into header files and source files
	Declaring a class in a header file
	Implementing a class in a source file

	Creating objects
	Initializing objects by using constructors
	Defining constructors
	Member initialization lists

	Defining class-wide members
	Defining class-wide data members
	Defining class-wide member functions
	Class constructors

	Using constants in classes
	Using class-wide constants
	Using instance constants

	Defining object relationships
	Defining the LoyaltyScheme Class
	Implementing the LoyaltyScheme class
	Creating and using LoyaltyScheme objects
	Testing the application

	Quick reference

	Chapter 7: Controlling object lifetimes
	The .NET approach to object lifetimes
	Destruction and finalization
	Destructors
	Finalizers
	Implementing the destructor and finalizer for a class
	Objects and stack semantics
	Copy constructors
	Relating objects with stack semantics

	Quick reference

	Chapter 8: Inheritance
	What is inheritance?
	Inheritance terminology
	Inheritance and code reuse

	Designing an inheritance hierarchy
	A word on substitutability

	Defining a base class
	Defining a derived class
	Creating derived class objects
	Concrete and abstract classes
	Overriding member functions
	Protected access
	Defining sealed classes
	Abstract and sealed

	Defining and using interfaces
	Quick reference

	Part II: Microsoft .NET programming basics
	Chapter 9: Value types
	Reference types and value types
	The need for value types
	Properties of value types

	Structures
	Creating and using a simple struct
	Investigating the structure
	The differences between structures and classes
	Implementing constructors for a structure
	Using one structure within another
	Copying structures

	Enumerations
	Creating and using an enumeration
	Using enumerations in applications
	Using memory efficiently

	Quick reference

	Chapter 10: Operator overloading
	What is operator overloading?
	What types need overloaded operators?
	What can you overload?
	Rules of overloading

	Overloading operators in managed types
	Overloading arithmetic operators
	Using static operator overloads
	What functions can you overload?
	Implementing logical operators
	Implementing increment and decrement
	Operators and reference types
	Guidelines for providing overloaded operators

	Quick reference

	Chapter 11: Exception handling
	What are exceptions?
	How do exceptions work?
	Exception types

	Throwing exceptions
	Handling exceptions
	Using the try and catch construct
	Customizing exception handling
	Using the exception hierarchy
	Using exceptions with constructors
	Nesting and rethrowing exceptions
	The finally block
	The catch(…) block

	Creating your own exception types
	Using safe_cast for dynamic casting
	Using exceptions across languages
	Quick reference

	Chapter 12: Arrays and collections
	Native C++ arrays
	Passing arrays to functions
	Initializing arrays
	Multidimensional arrays
	Dynamic allocation and arrays

	Generic types
	Managed arrays
	The .NET array class
	Basic operations on arrays
	More advanced array operations
	Using enumerators

	Other .NET collection classes
	The List<T> class
	The SortedList<K,V> class

	Generics and templates
	The STL/CLR library

	Quick reference

	Chapter 13: Properties
	What are properties?
	The two kinds of properties

	Implementing scalar properties
	Errors in properties
	Auto-implemented properties
	Read-only and write-only properties
	Properties, inheritance, and interfaces

	Implementing indexed properties
	The Bank example
	Creating Account class properties

	Adding accounts to the Bank class
	Implementing the Add and Remove methods
	Implementing an indexed property to retrieve accounts

	Quick reference

	Chapter 14: Delegates and events
	What are delegates?
	What is the purpose of delegates?
	Defining delegates
	Implementing delegates

	What are events?
	Implementing an event source class
	Implementing an event receiver
	Hooking it all together

	Quick reference

	Chapter 15: The .NET Framework class library
	What is the .NET Framework?
	The Common Language Runtime
	The Microsoft Intermediate Language
	The Common Type System
	The Common Language Specification
	The .NET Framework class library
	Assemblies
	Metadata

	The .NET Framework namespaces
	Using namespaces in C++ applications
	The System namespace
	The Collections namespaces
	The Collections interfaces
	The Diagnostics namespace
	The IO namespace
	The Windows namespaces
	The Net namespaces
	The ServiceModel namespaces
	The Xml namespaces
	The Data namespaces
	The Web namespaces

	Quick reference

	Part III: Using the .NET framework
	Chapter 16: Working with files
	The System::IO namespace
	Implementing text I/O by using readers and writers
	Using TextWriter
	The FileStream class
	Using TextReader

	Working with files and directories
	Getting information about files and directories

	Binary I/O
	The BinaryWriter class
	The BinaryReader class

	Quick reference

	Chapter 17: Reading and writing XML
	XML and .NET
	The .NET XML namespaces
	The XML processing classes

	Parsing XML by using XmlReader
	Parsing XML with validation

	Writing XML by using XmlTextWriter
	Using XmlDocument
	What is the W3C DOM?
	The XmlDocument class
	The XmlNode class

	Quick reference

	Chapter 18: Using ADO.NET
	What is ADO.NET?
	ADO.NET data providers
	ADO.NET namespaces
	ADO.NET assemblies

	Creating a connected application
	Connecting to a database
	Creating and executing a command
	Executing a command that modifies data
	Executing queries and processing the results

	Creating a disconnected application
	Disconnected operation using a DataSet
	Quick reference

	Chapter 19: Writing a service by using Windows Communication Foundation
	What is Windows Communication Foundation?
	Distributed systems
	Services
	Connectivity

	The ABCs of WCF
	Endpoints
	Address
	Binding
	Contract
	Message exchange patterns
	Behaviors

	Creating a service
	Writing a service client
	Adding metadata to the service
	Accessing a service by using a proxy

	Quick reference

	Chapter 20: Introducing Windows Store apps
	A (brief) history of writing Windows user interface applications
	The Win32 API
	Microsoft Foundation Classes
	Windows Forms
	Windows Presentation Foundation
	Windows 8 and Windows Store
	Which UI library to choose?

	Introducing Windows Store apps
	Main features of Windows Store apps

	Writing a Windows Store app
	Creating your first Windows Store app
	Examining the project

	Introducing XAML
	What is XAML?
	XAML syntax
	XAML controls
	Layout controls
	Event handling

	C++/CX and Windows RT
	Windows RT
	Metadata
	C++/CX syntax
	Common namespaces

	Quick reference

	Chapter 21: More about Windows Store apps
	Building the basic calculator
	Laying out the number buttons
	Handling number input
	Adding arithmetic operations
	Performing calculations
	Testing the calculator
	Improving the graphics
	Handling different number bases
	Using app bars
	Adding sharing
	Where next?

	Quick reference

	Part IV: Advanced topics
	Chapter 22: Working with unmanaged code
	Managed vs. unmanaged code
	Mixed classes
	The GCHandle type

	Pinning and boxing
	Interior pointers
	Pinning pointers
	Boxing and unboxing
	Boxing
	Unboxing

	Using P/Invoke to call functions in the Win32 API
	The DllImportAttribute class
	Passing structures

	Quick reference

	Chapter 23: Attributes and reflection
	Metadata and attributes
	Using ILDASM

	Using predefined attributes
	The AssemblyInfo.cpp file
	Using the predefined attribute classes

	Defining your own attributes
	Attribute class properties
	Design criteria for attribute classes
	Writing a custom attribute

	Using reflection to obtain attribute data
	The Type class
	Accessing standard attributes
	Accessing custom attribute data

	Quick reference

	Chapter 24: Living with Component Object Model
	COM components and the COM Interop
	Using COM components from .NET code
	How do RCWs work?
	Creating and using RCWs
	Handling COM errors
	Late binding to COM objects

	Using .NET components as COM components
	What must .NET types implement to be used as COM objects?

	Quick reference

	Index

